首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   57篇
  2023年   4篇
  2022年   3篇
  2021年   17篇
  2020年   9篇
  2019年   11篇
  2018年   10篇
  2017年   19篇
  2016年   18篇
  2015年   36篇
  2014年   37篇
  2013年   44篇
  2012年   53篇
  2011年   55篇
  2010年   35篇
  2009年   44篇
  2008年   35篇
  2007年   46篇
  2006年   37篇
  2005年   37篇
  2004年   31篇
  2003年   36篇
  2002年   23篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1967年   1篇
排序方式: 共有740条查询结果,搜索用时 828 毫秒
1.
Summary The ultrastructure of rat glomerular epithelial cells (podocytes) in kidney slices in vitro was examined using qualitative and quantitative electron microscopy. The kidney slices were cultured in Medium 199 with Hanks' salts in a 5% CO2/95% O2 environment for up to 14 days. Few changes in podocyte ultrastructure occurred in the first 12 h of culture, but by 24 h cell bodies were rounded, microvilli were present on all podocyte surfaces, and some foot processes had been replaced by flattened expanses of cytoplasm. These changes were more pronounced by 3 days, when some podocytes had developed pseudopodal extensions and appeared to be migrating from glomeruli onto the slice surface. Podocytes could still be identified after 8, 10 and 14 days of culture, although relatively few glomeruli remained at 14 days. Morphometric methods were used to analyse podocyte shape, volume and surface area during the first 4 days of culture. The most significant change involved loss of foot processes: the number of filtration slits per 100 m of basement membrane decreased from 211.8 ± 15.0 (mean ± SD) at the commencement of culture, to 55.3 ± 22.6 after 2 days (P < 0.001). These data provide baseline information for in vitro studies on the effects of nephrotoxins on podocytes.  相似文献   
2.
The ubiquitously expressed mammalian POU-domain protein Oct-1 specifically recognizes two classes of cis-acting regulatory elements that bear little sequence similarity, the octamer motif ATGCAAAT and the TAATGARAT motif. The related pituitary-specific POU protein Pit-1 also recognizes these two motifs but, unlike Oct-1, binds preferentially to the TAATGARAT motif. Yet in our assay, Pit-1 still binds octamer elements better than does the octamer motif-binding protein Oct-3. The POU domain is responsible for recognizing these diverse regulatory sequences through multiple DNA contacts that include the two POU subdomains, the POU-specific region, and the POU homeodomain. The DNA-binding properties of 10 chimeric POU domains, in which different POU-domain segments are derived from either Oct-1 or Pit-1, reveal a high degree of structural plasticity; these hybrid proteins all bind DNA well and frequently bind particular sites better than does either of the parental POU domains. In these chimeric POU domains, the POU-specific A and B boxes and the hypervariable POU linker can influence DNA-binding specificity. The surprising result is that the influence a particular segment has on DNA-binding specificity can be greatly affected by the origin of other segments of the POU domain and the sequence of the binding site. Thus, the broad but selective DNA-binding specificity of Oct-1 is conferred both by multiple DNA contacts and by dynamic interactions within the DNA-bound POU domain.  相似文献   
3.
4.
5.
Eighteen hours of immobilization stress, accompanied by food and water deprivation, increased liver metallothionein (MT) but decreased kidney MT levels. Food and water deprivation alone had a significant effect only on liver MT levels. In contrast, stress and food and water deprivation increased both liver and kidney lipid peroxidation levels, indicating that the relationship between MT and lipid peroxidation levels (an index of free radical production) is unclear. Adrenalectomy increased both liver and kidney MT levels in basal conditions, whereas the administration of corticosterone in the drinking water completely reversed the effect of adrenalectomy, indicating an inhibitory role of glucocorticoids on MT regulation in both tissues. Changes in glutathione (GSH) metabolism produced significant effects on kidney MT levels. Thus, the administration of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased kidney GSH and increased kidney MT content, suggesting that increased cysteine pools because of decreased GSH synthesis might increase kidney MT levels through an undetermined mechanism as it appears to be the case in the liver. However, attempts to increase kidney MT levels by the administration of cysteine or GSH were unsuccesful, in contrast to what is known for the liver. The present results suggest that there are similarities but also substantial differences between liver and kidney MT regulation in these experimental conditions.  相似文献   
6.
We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus.  相似文献   
7.
The nucleotide sequence of 17 variants of the satellite RNA of cucumber mosaic virus (CMV-satRNA) isolated from field-infected tomato plants in the springs of 1989, 1990, and 1991 was determined. The sequence of each of the 17 satRNAs was unique and was between 334 and 340 nucleotides in length; 57 positions were polymorphic. There was much genetic divergence, ranging from 0.006 to 0.141 nucleotide substitutions per site for pairwise comparisons, and averaging 0.074 for any pair. When the polymorphic positions were analyzed relative to a secondary structure model proposed for CMV-satRNAs, it was found that there were significantly different numbers of changes in base-paired and non–base-paired positions, and that mutations that did not disrupt base pairing were preferred at the putatively paired sites. This supports the concept that the need to maintain a functional structure may limit genetic divergence of CMV-satRNA. Phylogenetic analyses showed that the 17 CMV-satRNA variants clustered into two subgroups, I and II, and evolutionary lines proceeding by the sequential accumulation of mutations were apparent. Three satRNA variants were outliers for these two phylogenetic groups. They were shown to be recombinants of subgroup I and II satRNAs by calculating phylogenies for different molecular regions and by using Sawyer's test for gene conversion. At least two recombination events were required to produce these three recombinant satRNAs. Thus, recombinants were found to be frequent (∼17%) in natural populations of CMV-satRNA, and recombination may make an important contribution to the generation of new variants. To our knowledge this is the first report of data allowing the frequency of recombinant isolates in natural populations of an RNA replicon to be estimated. Received: 14 May 1996 / Accepted: 17 July 1996  相似文献   
8.
PurposeDespite the developments in conventional transvenous pacemakers (VVI-PM), the procedure is still associated with significant complications. Although there are no prospective clinical trials that compared VVI-PM with transcatheter pacemaker systems (TPS).MethodsThis is a prospective, observational, single-center study that included all patients with an indication for a single-chamber pacemaker implant within a 4-year period. All clinical, ECG and echocardiographic characteristics at implant, electrical parameters, associated complications and mortality were analyzed. A Cox survival model and a Bayesian cohort analysis were performed for differences in complication rates between groups.ResultsThere were 443 patients included (198 TPS and 245 VVI-PM). The mean age was 81.5 years (TPS group, 79.2 ± 6.6 years; VVI-PM group, 83.5 ± 8.9 years). There was a male predominance in TPS group (123, 62.1% vs. 67, 27.3%; p < 0.001). The presence of systolic dysfunction and renal insufficiency were more frequent in VVI-PM group than in TPS patients. Mean follow-up was 22.3 ± 15.9 months. In a multivariable paired data the TPS group presented fewer complications than VVI-PM group (HR = 0.39 [0.15–0.98], p-value 0.013), but major complications were not different (6, 3% vs 14, 5.6% respectively, p = 0.1761). There was no difference in the mortality rate between the groups. The TPS group had less risk than VVI-PM group to have a complication, with a 96% of probability.ConclusionsTPS patients had a lower overall complication rate than VVI-PM patients including matched-pair samples using a Bayesian analysis. These results confirm the safety profile of TPS in clinical practice.  相似文献   
9.
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error‐prone, HR uses the sister chromatid and is mostly error‐free. We report that the HR protein Rad52—but not Rad51 and Rad57—acts in concert with the TLS machinery (Rad6/Rad18‐mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light‐induced ssDNA gaps through a non‐recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS‐ and UV‐induced HR); accordingly, Rad52 is required for efficient DNA damage‐induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage‐induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57‐dependent and ‐independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.  相似文献   
10.
The Sar1 GTPase coordinates the assembly of coat protein complex‐II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER‐to‐Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII‐mediated transport in mammalian cells, we used small interfering RNA (siRNA)‐mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER‐to‐Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen‐I is inhibited. These data provide proof‐of‐principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号