首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   11篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   19篇
  2013年   14篇
  2012年   16篇
  2011年   14篇
  2010年   11篇
  2009年   14篇
  2008年   11篇
  2007年   28篇
  2006年   15篇
  2005年   17篇
  2004年   12篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   4篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1960年   2篇
排序方式: 共有253条查询结果,搜索用时 22 毫秒
1.
In species with polygynous mating systems, females are regarded as food-limited, while males are limited by access to mates. When local density increases, forage availability declines, while mate access for males may increase due to an increasingly female-biased sex ratio. Density dependence in emigration rates may consequently differ between sexes. Here, we investigate emigration using mark-recovery data from 468 young red deer Cervus elaphus marked in Snillfjord, Norway over a 20-year period when the population size has increased sixfold. We demonstrate a strong negative density-dependent emigration rate in males, while female emigration rates were lower and independent of density. Emigrating males leaving the natal range settled in areas with lower density than expected by chance. Dispersing males moved 42 per cent longer at high density in 1997 (37 km) than at low density in 1977 (26 km), possibly caused by increasing saturation of deer in areas surrounding the marking sites. Our study highlights that pattern of density dependence in dispersal rates may differ markedly between sexes in highly polygynous species. Contrasting patterns reported in small-scale studies are suggestive that spatial scale of density variation may affect the pattern of temporal density dependence in emigration rates and distances.  相似文献   
2.
Catching the WAVEs of Plant Actin Regulation   总被引:3,自引:0,他引:3  
Plants, as all other eukaryotic organisms, depend on a dynamic actin cytoskeleton for proper function and development. Actin dynamics is a complex process, regulated by a number of actin-binding proteins and large multiprotein complexes like ARP2/3 and WAVE. The ARP2/3 complex is recognized as a nucleator of actin filaments, and it generates a highly branched network of interlaced microfilaments. Results from multiple organisms show that ARP2/3 activity is regulated through multiple pathways. Recent results from plants point to a signaling pathway leading from the small GTPase RAC/ROP through a protein complex containing the ARP2/3-activating protein WAVE. This signaling pathway appears to be evolutionarily conserved. Support for this regulatory mechanism comes from studies of mutations in genes encoding subunits of the putative ARP2/3 complex and the WAVE complex in Arabidopsis. Several such mutants have defects of actin filament organization, leading to a conspicuous “distorted” trichome phenotype. Multiple growth and developmental phenotypes reported for napp/gnarled/atnap, pirp/pirogi/atpir, and distorted3 mutants reveal that these WAVE proteins are also required for a wider variety of cellular functions in addition to regulating trichome cell growth. These results have implications for the current view on cell morphogenesis in plants.  相似文献   
3.
Climatic changes are disrupting otherwise tight trophic interactions between predator and prey. Most of the earlier studies have primarily focused on the temporal dimension of the relationship in the framework of the match–mismatch hypothesis. This hypothesis predicts that predator's recruitment will be high if the peak of the prey availability temporally matches the most energy‐demanding period of the predators breeding phenology. However, the match–mismatch hypothesis ignores the level of food abundance while this can compensate small mismatches. Using a novel time‐series model explicitly quantifying both the timing and the abundance component for trophic relationships, we here show that timing and abundance of food affect recruitment differently in a marine (cod/zooplankton), a marine–terrestrial (puffin/herring) and a terrestrial (sheep/vegetation) ecosystem. The quantification of the combined effect of abundance and timing of prey on predator dynamics enables us to come closer to the mechanisms by which environment variability may affect ecological systems.  相似文献   
4.

Background

In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns.

Methods

Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores.

Results

Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls.

Conclusions

There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.  相似文献   
5.
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.  相似文献   
6.

OBJECTIVES

This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods.

METHODS

Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods.

RESULTS

CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not.

CONCLUSIONS

DSC-MRI is highly repeatable in high-grade glioma patients.  相似文献   
7.
8.
BackgroundElucidating the neurobiological effects of sleep and waking remains an important goal of the neurosciences. Recently, animal studies indicated that sleep is important for cell membrane and myelin maintenance in the brain and that these structures are particularly susceptible to insufficient sleep. Here, we tested the hypothesis that a day of waking and sleep deprivation would be associated with changes in diffusion tensor imaging (DTI) indices of white matter microstructure sensitive to axonal membrane and myelin alterations.MethodsTwenty-one healthy adult males underwent DTI in the morning [7:30AM; time point (TP)1], after 14 hours of waking (TP2), and then after another 9 hours of waking (TP3). Whole brain voxel-wise analysis was performed with tract based spatial statistics.ResultsA day of waking was associated with widespread increases in white matter fractional anisotropy, which were mainly driven by radial diffusivity reductions, and sleep deprivation was associated with widespread fractional anisotropy decreases, which were mainly explained by reductions in axial diffusivity. In addition, larger decreases in axial diffusivity after sleep deprivation were associated with greater sleepiness. All DTI changes remained significant after adjusting for hydration measures.ConclusionsThis is the first DTI study of sleep deprivation in humans. Although previous studies have observed localized changes in DTI indices of cerebral microstructure over the course of a few hours, further studies are needed to confirm widespread DTI changes within hours of waking and to clarify whether such changes in white matter microstructure serve as neurobiological substrates of sleepiness.  相似文献   
9.
10.
Ungulate populations exhibiting partial migration present a unique opportunity to explore the causes of the general phenomenon of migration. The European roe deer Capreolus capreolus is particularly suited for such studies due to a wide distribution range and a high level of ecological plasticity. In this study we undertook a comparative analysis of roe deer GPS location data from a representative set of European ecosystems available within the EURODEER collaborative project. We aimed at evaluating the ecological factors affecting migration tactic (i.e. occurrence) and pattern (i.e. timing, residence time, number of migratory trips). Migration occurrence varied between and within populations and depended on winter severity and topographic variability. Spring migrations were highly synchronous, while the timing of autumn migrations varied widely between regions, individuals and sexes. Overall, roe deer were faithful to their summer ranges, especially males. In the absence of extreme and predictable winter conditions, roe deer seemed to migrate opportunistically, in response to a tradeoff between the costs of residence in spatially separated ranges and the costs of migratory movements. Animals performed numerous trips between winter and summer ranges which depended on factors influencing the costs of movement such as between‐range distance, slope and habitat openness. Our results support the idea that migration encompasses a behavioural continuum, with one‐trip migration and residence as its end points, while commuting and multi‐trip migration with short residence times in seasonal ranges are intermediate tactics. We believe that a full understanding of the variation in tactics of temporal separation in habitat use will provide important insights on migration and the factors that influence its prevalence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号