首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
  2023年   1篇
  2021年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   13篇
  2010年   2篇
  2009年   3篇
  2008年   11篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1988年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
2.
We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.  相似文献   
3.
The review deals with phytase-producing microorganisms along with optimum conditions for its production. Various methods used for purifying phytases and their characteristics are discussed. Heterologous gene expression, cost-effective large-scale phytase production, and various biotechnological applications of the enzyme in animal feed and food industries are also discussed.  相似文献   
4.
We report the efficacy of a bimodal immunization regimen that involved priming with naked DNA (multiple doses) followed by a booster with recombinant protein in rhesus monkeys with a chimeric construct containing the N-terminus of thrombospondin-related adhesive protein and the C-terminus of circumsporozoite protein of Plasmodium cynomolgi. The vaccinated animals developed high titer antibodies against the chimeric antigen, the two components of the hybrid and the native proteins of sporozoites. The peripheral blood mononuclear cells isolated from the vaccinated animals had significant in vitro T cell proliferation activity when stimulated with the recombinant chimeric protein. Furthermore, following challenge with 1000 P. cynomolgi sporozoites, the peak and total parasitemia were significantly lower in vaccinated animals than in the control animals.  相似文献   
5.
Copper plays an indispensable role in the physiology of the human central nervous system (CNS). As a cofactor of dopamine-β-hydroxylase, peptidyl-α-monooxygenase, superoxide dismutases, and many other enzymes, copper is a critical contributor to catecholamine biosynthesis, activation of neuropeptides and hormones, protection against reactive oxygen species, respiration and other processes essential for normal CNS function. Copper content in the CNS is tightly regulated, and changes in copper levels in the brain are associated with a wide spectrum of pathologies. However, the mechanistic understanding of copper transport in the CNS is still in its infancy. Little is known about copper distribution among various cell types or cell-specific regulation of copper homeostasis, despite the fact that the molecules mediating copper transport and distribution in the brain (CTR1, Atox1, CCS, ScoI/II, ATP7A and ATP7B) have been identified and their importance in CNS function increasingly understood. In this review, we summarize current knowledge about copper levels and uses in the CNS and describe the molecules involved in maintaining copper homeostasis in the brain.  相似文献   
6.
Luo C  Tong M  Chilukuri N  Brecht K  Maxwell DM  Saxena A 《Biochemistry》2007,46(42):11771-11779
The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.  相似文献   
7.
8.

Background

Lung cancer still remains one of the most commonly occurring solid tumors and even in stage Ia, surgery fails in 30% of patients who develop distant metastases. It is hypothesized that these must have developed from occult circulating tumor cells present at the time of surgery, or before. The aim of the present study was to detect such cells in the peripheral blood and to monitor these cells following surgery.

Methods

30 patients treated for lung cancer with surgery were monitored for circulating epithelial cells (CEC) by taking peripheral blood samples before, 2 weeks and 5 months after surgery and/or radiotherapy (RT) chemotherapy (CT) or combined RT/CT using magnetic bead enrichment and laser scanning cytometry (MAINTRAC®) for quantification of these cells.

Results

In 86% of the patients CEC were detected before surgery and in 100% at 2 weeks and 5 months after surgery. In the control group, which consisted of 100 normal donors without cancer, 97 % were negative for CEC. A significantly higher number of CEC was found preoperatively in patients with squamous cell carcinoma than in those with adenocarcinoma. In correlation to the extent of parenchymal manipulation 2 weeks after surgery, an increase in numbers of CEC was observed with limited resections (18/21) whereas pneumonectomy led to a decrease (5/8) of CEC, 2 weeks after surgery. The third analysis done 5 months after surgery identified 3 groups of patients. In the group of 5 patients who received neo- or adjuvant chemo/radiotherapy there was evidence that monitoring of CEC can evaluate the effects of therapy. Another group of 7 patients who underwent surgery only showed a decrease of CEC and no signs of relapse. A third group of 11 patients who had surgery only, showed an increase of CEC (4 with an initial decrease after surgery and 7 with continuous increase). In the group with a continuous increase during the following 24 months, 2 early relapses in patients with stage Ia adenocarcinoma were observed. The increase of CEC preceded clinical detection by six months.

Conclusion

We consider, therefore, that patients with adenocarcinoma and a continuous increase of CEC after complete resection for lung cancer are at an increased risk of early relapse.  相似文献   
9.
Abrin and agglutinin-I from the seeds of Abrus precatorius are type II ribosome-inactivating proteins that inhibit protein synthesis in eukaryotic cells. The two toxins share a high degree of sequence similarity; however, agglutinin-I is weaker in its activity. We compared the kinetics of protein synthesis inhibition by abrin and agglutinin-I in two different cell lines and found that approximately 200-2000-fold higher concentration of agglutinin-I is needed for the same degree of inhibition. Like abrin, agglutinin-I also induced apoptosis in the cells by triggering the intrinsic mitochondrial pathway, although at higher concentrations as compared with abrin. The reason for the decreased toxicity of agglutinin-I became apparent on the analysis of the crystal structure of agglutinin-I obtained by us in comparison with that of the reported structure of abrin. The overall protein folding of agglutinin-I is similar to that of abrin-a with a single disulfide bond holding the toxic A subunit and the lectin-like B-subunit together, constituting a heterodimer. However, there are significant differences in the secondary structural elements, mostly in the A chain. The substitution of Asn-200 in abrin-a with Pro-199 in agglutinin-I seems to be a major cause for the decreased toxicity of agglutinin-I. This perhaps is not a consequence of any kink formation by a proline residue in the helical segment, as reported by others earlier, but due to fewer interactions that proline can possibly have with the bound substrate.  相似文献   
10.
Cholinesterases (ChEs) are classified as either acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) based on their substrate and inhibitor specificity. Organophosphate and carbamate compounds commonly represented by herbicides, pesticides, and nerve gases irreversibly inhibit ChEs. Therefore, exposure to organophosphates and carbamates is normally assessed by measuring ChE activity in blood. There are two approaches for measuring AChE and BChE activity present in whole blood: (1) separating blood into erythrocytes, which contain only AChE, and plasma which contains only BChE, to measure their activity individually, or (2) use a BChE-specific inhibitor to measure the activity of AChE in whole blood. A number of studies have reported the use of different inhibitors for the simultaneous measurement of AChE and BChE activities. However, the inhibitors used for completely inhibiting BChE activity also inhibited AChE activity leading to errors in reported values. The goal of this study was to find the most accurate and simple method for the simultaneous determination of AChE and BChE activity in animal whole blood. Solutions containing human AChE and BChE in various proportions were prepared and AChE and BChE activities were measured using three reported methods. Results demonstrate that ethopropazine and (-) huperzine A appear to be the most specific ChE inhibitors. Preliminary results with human and animal whole blood suggest that 20muM ethopropazine and 500nM (-) huperzine A can be used for measuring AChE and BChE activities across species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号