首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   91篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   13篇
  2012年   21篇
  2011年   22篇
  2010年   13篇
  2009年   22篇
  2008年   18篇
  2007年   23篇
  2006年   16篇
  2005年   17篇
  2004年   17篇
  2003年   13篇
  2002年   14篇
  2001年   17篇
  2000年   19篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   5篇
  1992年   27篇
  1991年   14篇
  1990年   9篇
  1989年   16篇
  1988年   16篇
  1987年   13篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   13篇
  1982年   6篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1974年   14篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1968年   4篇
  1967年   7篇
  1965年   4篇
排序方式: 共有587条查询结果,搜索用时 343 毫秒
1.
A Na+/H+ exchanger is involved in the regulation of cytoplasmic pH and cellular volume in a variety of cells. Little is known about the molecular nature of this exchanger. The purpose of this study was to survey a variety of group-specific covalent reagents as potential inhibitors of the exchanger. Na+/H+ countertransport activity was assayed as the amiloride-sensitive rate of Na+-induced alkalinization in acid-loaded lymphocytes, or as the rate of swelling in cells suspended in sodium propionate medium. Activity was not affected by proteinases or by carboxyl-group and amino-group specific reagents. A significant inhibition was produced by diethylpyrocarbonate, a histidine-specific reagent and by N-ethylmaleimide, a sulfhydryl group reagent. A similarly reactive but nonpermeating sulfhydryl agent, glutathione-maleimide, failed to inhibit Na+-H+ exchange. Moreover, the reaction with N-ethylmaleimide was sensitive to changes in the cytoplasmic pH. The data suggest that the chemically reactive groups of the Na+/H+ exchanger of lymphocytes have limited exposure to the extracellular medium but that an internally located sulfhydryl group is critical for the cation-exchange activity.  相似文献   
2.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   
3.
The rates of synthesis and degradation of enolase and total soluble proteins slow with age in the free-living nematode, Turbatrix aceti. The half-lives are 73 and 58 h for soluble protein and enolase, respectively, in young organisms (5 days old). The respective figures are 163 and 161 h for old organisms (22–30 days old). Similar slowing of protein turnover occurs when the organisms are aged by a repeated screening procedure which avoids the use of fluorodeoxyuridine, an inhibitor of DNA synthesis normally added to aging cultures to obtain synchrony. The results support the idea that slowed protein turnover may be responsible for the formation of altered enzymes in old organisms.  相似文献   
4.
Constitutive expression of NF-kappa B has been associated with developmental maturity in B cells on the basis of studies using continuously growing cell lines and plasmacytomas; however, little is known about the behavior of NF-kappa B in primary, mature B cells. In the present work, the regulation of NF-kappa B expression was studied by analyzing subcellular fractions of adult murine splenic B cells with the electrophoretic mobility shift assay using a kappa B-containing oligonucleotide. Although nuclear extracts from resting B cells contained kappa B-binding activity, additional kappa B-binding activity was present in cytosolic fractions in a form that became apparent after treatment with detergent. Competition analysis indicated that the DNA binding activity detected by electrophoretic gel mobility shift assay was specific for the kappa B motif, and UV photo-cross-linking showed the molecular size of kappa B-binding protein to be similar to that of the DNA binding subunit of NF-kappa B. Nuclear expression of kappa B-binding activity was markedly induced by treatment of B cells with phorbol ester or with LPS. Most notably, kappa B-binding activity was induced after surface IgR cross-linking, and the mechanism of this induction involved PKC. Further, anti-Ig-induced activity was superinduced in the presence of cycloheximide. These results indicate that nuclear NF-kappa B is rapidly induced as a result of B cell stimulation, and further suggest that NF-kappa B may play a specific role in mature B cells after ligand binding to surface Ig distinct from its postulated developmental role as a stage-specific factor involved in kappa-enhancer function.  相似文献   
5.
Peroxidases (EC 1.11.1.7) have been implicated in the responses of plants to physical stress and to pathogens, as well as in a variety of cellular processes including cell wall biosynthesis. Tissue samples from leaf, root, pith, and callus of Nicotiana tabacum were assayed for specific peroxidase isozymes by analytical isoelectric focusing. Each tissue type was found to exhibit a unique isozyme fingerprint. Root tissue expressed all of the detectable peroxidase isozymes in the tobacco plant, whereas each of the other tissues examined expressed a different subset of these isozymes. In an effort to determine which peroxidase isozymes from Nicotiana tabacum are involved in cell wall biosynthesis or other normal cellular functions and which respond to stress, plants were subjected to either wounding or infection with tobacco mosaic virus. Wounding the plant triggered the expression of several cationic isozymes in the leaf and both cationic and anionic isozymes in pith tissue. Maximum enzyme activity was detected at 72 hours after wounding, and cycloheximide treatment prevented this induction. Infection of tobacco with tobacco mosaic virus induced two moderately anionic isozymes in the leaves in which virus was applied and also systemically induced in leaves which were not inoculated with virus.  相似文献   
6.
7.
Complementary DNA has been isolated that codes for maize nitrite reductase (NiR) by using the corresponding spinach gene (E Back et al. 1988 Mol Gen Genet 212:20-26) as a heterologous probe. The sequences of the complementary DNAs from the two species are 66% homologous while the deduced amino acid sequences are 86% similar when analogous amino acids are included. A high percentage of the differences in the DNA sequences is due to the extremely strong bias in the corn gene to have a G/C base in the third codon position with 559/569 codons ending in a G or C. Using a hydroponic system, maize seedlings grown in the absence of an exogenous nitrogen source were induced with nitrate or nitrite. Nitrate stimulated a rapid induction of the NiR mRNA in both roots and leaves. There is also a considerable induction of this gene in roots upon the addition of nitrite, although under the conditions used the final mRNA level was not as high as when nitrate was the inducer. There is a small but detectable level of NiR mRNA in leaves prior to induction, but no constitutive NiR mRNA can be seen in the roots. Analysis of genomic DNA supports the notion that there are at least two NiR genes in maize.  相似文献   
8.
9.
Saccharomyces cerevisiae cells that are mutated at TOP3, a gene that encodes a protein homologous to bacterial type I topoisomerases, have a variety of defects, including reduced growth rate, altered gene expression, blocked sporulation, and elevated rates of mitotic recombination at several loci. The rate of ectopic recombination between two unlinked, homologous loci, SAM1 and SAM2, is sixfold higher in cells containing a top3 null mutation than in wild-type cells. Mutations in either of the two other known topoisomerase genes in S. cerevisiae, TOP1 and TOP2, do not affect the rate of recombination between the SAM genes. The top3 mutation also changes the distribution of recombination events between the SAM genes, leading to the appearance of novel deletion-insertion events in which conversion tracts extend beyond the coding sequence, replacing the DNA flanking the 3' end of one SAM gene with nonhomologous DNA flanking the 3' end of the other. The effects of the top3 null mutation on recombination are dependent on the presence of an intact RAD1 excision repair gene, because both the rate of SAM ectopic gene conversion and the conversion tract length were reduced in rad1 top3 mutant cells compared with top3 mutants. These results suggest that a RAD1-dependent function is involved in the processing of damaged DNA that results from the loss of Top3 activity, targeting such DNA for repair by recombination.  相似文献   
10.
The level of nitrate reductase (NR) and nitrite reductase (NiR) varied in both shoot and root tissue from nitrate-fed Zea mays L. grown under a 16-hour light/8-hour dark regime over a 10-day period postgermination, with peak activity occurring in days 5 to 6. To study the effect of different light regimes on NR and NiR enzyme activity and mRNA levels, 6-day-old plants were grown in the presence of continuous KNO3 (10 millimolar). Both shoot NRA and mRNA varied considerably, peaking 4 to 8 hours into the light period. Upon transferring plants to continuous light, the amplitude of the peaks increased, and the peaks moved closer together. In continuous darkness, no NR mRNA or NR enzyme activity could be detected by 8 hours and 12 hours, respectively. In either a light/dark or continuous light regime, root NRA and mRNA did not vary substantially. However, when plants were placed in continuous darkness, both declined steadily in the roots, although some remained after 48 hours. Although there was no obvious cycling of NiR enzyme activity in shoot tissue, changes in mRNA mimicked those seen for NR mRNA. The expression of NR and NiR genes is affected by the light regime adopted, but light does not have a direct effect on the expression of these genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号