首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2105篇
  免费   166篇
  国内免费   1篇
  2023年   8篇
  2021年   31篇
  2020年   30篇
  2019年   32篇
  2018年   42篇
  2017年   41篇
  2016年   59篇
  2015年   101篇
  2014年   97篇
  2013年   122篇
  2012年   184篇
  2011年   146篇
  2010年   99篇
  2009年   89篇
  2008年   121篇
  2007年   133篇
  2006年   86篇
  2005年   102篇
  2004年   91篇
  2003年   80篇
  2002年   100篇
  2001年   20篇
  2000年   17篇
  1999年   20篇
  1998年   22篇
  1997年   21篇
  1996年   18篇
  1995年   21篇
  1994年   20篇
  1993年   18篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   19篇
  1988年   14篇
  1987年   7篇
  1986年   10篇
  1985年   16篇
  1984年   12篇
  1982年   14篇
  1981年   13篇
  1979年   14篇
  1978年   13篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1974年   12篇
  1973年   11篇
  1969年   6篇
  1968年   8篇
排序方式: 共有2272条查询结果,搜索用时 15 毫秒
1.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   
2.

Objective

We sought to investigate various molecular subtypes defined by genomic instability that may be related to early death and recurrence in colon cancer.

Methods

We sought to investigate various molecular subtypes defined by instability at microsatellites (MSI), changes in methylation patterns (CpG island methylator phenotype, CIMP) or copy number variation (CNV) in 8 genes. Stage II-III colon cancers (n = 64) were investigated by methylation-specific multiplex ligated probe amplification (MS-MLPA). Correlation of CNV, CIMP and MSI, with mutations in KRAS and BRAFV600E were assessed for overlap in molecular subtypes and early recurrence risk by uni- and multivariate regression.

Results

The CIMP phenotype occurred in 34% (22/64) and MSI in 27% (16/60) of the tumors, with noted CIMP/MSI overlap. Among the molecular subtypes, a high CNV phenotype had an associated odds ratio (OR) for recurrence of 3.2 (95% CI 1.1-9.3; P = 0.026). Losses of CACNA1G (OR of 2.9, 95% CI 1.4-6.0; P = 0.001), IGF2 (OR of 4.3, 95% CI 1.1-15.8; P = 0.007), CDKN2A (p16) (OR of 2.0, 95% CI 1.1-3.6; P = 0.024), and RUNX3 (OR of 3.4, 95% CI 1.3-8.7; P = 0.002) were associated with early recurrence, while MSI, CIMP, KRAS or BRAF V600E mutations were not. The CNV was significantly higher in deceased patients (CNV in 6 of 8) compared to survivors (CNV in 3 of 8). Only stage and loss of RUNX3 and CDKN2A were significant in the multivariable risk-model for early recurrence.

Conclusions

A high copy number variation phenotype is a strong predictor of early recurrence and death, and may indicate a dose-dependent relationship between genetic instability and outcome. Loss of tumor suppressors RUNX3 and CDKN2A were related to recurrence-risk and warrants further investigation.  相似文献   
3.
Submicronic particles released from fungal cultures have been suggested to be additional sources of personal exposure in mold-contaminated buildings. In vitro generation of these particles has been studied with particle counters, eventually supplemented by autofluorescence, that recognize fragments by size and discriminate biotic from abiotic particles. However, the fungal origin of submicronic particles remains unclear. In this study, submicronic fungal particles derived from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum cultures grown on agar and gypsum board were aerosolized and enumerated using field emission scanning electron microscopy (FESEM). A novel bioaerosol generator and a fungal spores source strength tester were compared at 12 and 20 liters min−1 airflow. The overall median numbers of aerosolized submicronic particles were 2 × 105 cm−2, 2.6 × 103 cm−2, and 0.9 × 103 cm−2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. A. fumigatus released significantly (P < 0.001) more particles than A. versicolor and P. chrysogenum. The ratios of submicronic fragments to larger particles, regardless of media type, were 1:3, 5:1, and 1:2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Spore fragments identified by the presence of rodlets amounted to 13%, 2%, and 0% of the submicronic particles released from A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Submicronic particles with and without rodlets were also aerosolized from cultures grown on cellophane-covered media, indirectly confirming their fungal origin. Both hyphae and conidia could fragment into submicronic particles and aerosolize in vitro. These findings further highlight the potential contribution of fungal fragments to personal fungal exposure.  相似文献   
4.
High-pH anion-exchange chromatography with pulsed amperometric detection is a highly sensitive technique that can be used for detecting changes in sialylation and fucosylation, as well as different branching patterns of N-linked oligosaccharides in glycoproteins. We examined the N-glycans of α1-acid glycoprotein obtained from twelve patients with various inflammatory conditions with this technique, as well as traditional concanavalin A crossed affinity immunoelectrophoresis. We found the chromatographic profiles of N-glycans in all patients with rheumatoid arthritis to be very similar, but significantly different from normal controls. N-glycans from patients with ulcerative colitis also showed specific alterations in their chromatographic profiles. However, some heterogeneity was found between these patients, perhaps reflecting changes in glycosylation secondary to certain states of the disease, or to medical treatment. We conclude that this technique is useful for detailed mapping of glycosylation changes in α1-acid glycoprotein in clinical samples, and that it may be used to further increase our knowledge about glycosylation changes in response to inflammatory disease. Abbreviations: AC, acute cholangitis; AGP, α1-acid glycoprotein; CAIE, crossed affinity immunoelectrophoresis; Con A, concanavalin A; HPAEC-PAD, high-pH anion-exchange chromatography with pulsed amperometric detection; IEC, ion exchange chromatography; RA, rheumatoid arthritis; SLex, sialyl Lex; UC, ulcerative colitis This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
5.
Carbon cycle feedbacks from permafrost ecosystems are expected to accelerate global climate change. Shifts in vegetation productivity and composition in permafrost regions could influence soil organic carbon (SOC) turnover rates via rhizosphere (root zone) priming effects (RPEs), but these processes are not currently accounted for in model predictions. We use a radiocarbon (bomb‐14C) approach to test for RPEs in two Arctic tall shrubs, alder (Alnus viridis (Chaix) DC.) and birch (Betula glandulosa Michx.), and in ericaceous heath tundra vegetation. We compare surface CO2 efflux rates and 14C content between intact vegetation and plots in which below‐ground allocation of recent photosynthate was prevented by trenching and removal of above‐ground biomass. We show, for the first time, that recent photosynthate drives mineralization of older (>50 years old) SOC under birch shrubs and ericaceous heath tundra. By contrast, we find no evidence of RPEs in soils under alder. This is the first direct evidence from permafrost systems that vegetation influences SOC turnover through below‐ground C allocation. The vulnerability of SOC to decomposition in permafrost systems may therefore be directly linked to vegetation change, such that expansion of birch shrubs across the Arctic could increase decomposition of older SOC. Our results suggest that carbon cycle models that do not include RPEs risk underestimating the carbon cycle feedbacks associated with changing conditions in tundra regions.  相似文献   
6.
Light- and nitrogen-use change was examined along productivity gradients in natural grasslands at Laelatu, western Estonia, both at community level and in most abundant species. Aboveground biomass (M) ranged from 341 to 503 g m?2 in wet (W) and from 248 to 682 g m?2 in dry (D) community. Aboveground leaf area ratio (aLAR) decreased with rising M in D site, while it increased in W site. In a high-aLAR W community (significantly higher compared to D), adjustment of leaf morphology through an increase in specific leaf area is responsible for an increase in aLAR with rising productivity. In low-aLAR stand, by contrast, adjustment of biomass allocation due to decrease in aboveground leaf mass fraction is primarily responsible for the tendency of aLAR to decline. In conclusion, a decrease in aLAR is not a universal response to increasing M. We hypothesise that there exists an optimum of light acquisition efficiency (ΦM) along a productivity gradient independent of community type. Aboveground nitrogen-use efficiency (aNUE) decreased in high-aLAR, W community with increasing M, while in low-aLAR, D site, there was no relationship along a gradient, although aNUE increased along six plots dominated by graminoids. A trade-off was established between leaf nitrogen content per unit leaf area (N A) and aLAR.  相似文献   
7.
Present and future needs for algae and algal products   总被引:1,自引:0,他引:1  
Jensen  Arne 《Hydrobiologia》1993,260(1):15-23
A review of the present needs, mainly for production of phycocolloids and food condiments, is given. Supply and demand vary from balanced, in some, to disproportionate in other fields. World-wide shortage of agarophytes contrasts with huge, unexploited beds of brown seaweeds.In future, partly conflicting trends will decide the needs for algae and algal products. Growth in the human population, pollution, overexploitation of land and lack of freshwater will encourage use of seaweeds. Modern biotechnology will favour this development, but will also be a serious threat to industrial exploitation of seaweeds. Future uses of marine algae will be decisively influenced by the effort put into and the results coming out of seaweed research.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号