首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   36篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   20篇
  2011年   26篇
  2010年   16篇
  2009年   20篇
  2008年   16篇
  2007年   15篇
  2006年   18篇
  2005年   19篇
  2004年   19篇
  2003年   21篇
  2002年   18篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
1.
Abstract The genes encoding the CryIVB and CryIVD crystal polypeptides of B. thuringiensis subsp. israelensis were cloned indepently on a stable shuttle vector, and transfered into B. sphaericus 2297. Recombinant cells expressed the B. thuringiensis toxins during sporulation and were shown to be toxic to Aedes aegypti fourth instar larvae, whereas the parental strain was not.  相似文献   
2.
Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes. We constructed a chromosomal Δtig deletion and evaluated the impact of the mutation on bacterial growth in broth under various stress conditions and on pathogenesis. The Δtig deletion did not affect cell viability but impaired survival in the presence of heat and ethanol stresses. We also identified the ffh gene, encoding a protein homologous to the SRP54 eukaryotic component of the signal recognition particle. However, a Δffh deletion was not tolerated, suggesting that Ffh is essential, as it is in Bacillus subtilis and Escherichia coli. Thus, although dispensable for growth, TF is involved in the stress response of L. monocytogenes. The Δtig mutant showed no or very modest intracellular survival defects in eukaryotic cells. However, in vivo it showed a reduced capacity to persist in the spleens and livers of infected mice, revealing that TF has a role in the pathogenicity of L. monocytogenes.  相似文献   
3.
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.Nucleoside hydrolases or nucleoside N-ribohydrolases (NRHs; EC 3.2.2.-) are glycosidases that catalyze the cleavage of the N-glycosidic bond in nucleosides to enable the recycling of the nucleobases and Rib (Fig. 1A). The process by which nucleosides and nucleobases are recycled is also known as salvaging and is a way of conserving energy, which would otherwise be needed for the de novo synthesis of purine- and pyrimidine-containing compounds. During the salvage, bases and nucleosides can be converted into nucleoside monophosphates by the action of phosphoribosyltransferases and nucleoside kinases, respectively, and further phosphorylated into nucleoside diphosphates and triphosphates (Moffatt et al., 2002; Zrenner et al., 2006; Fig. 1B). Uridine kinase and uracil phosphoribosyl transferase are key enzymes in the pyrimidine-salvaging pathway in plants (Mainguet et al., 2009; Chen and Thelen, 2011). Adenine phosphoribosyltransferase and adenosine kinase (ADK) are important in purine salvaging (Moffatt and Somerville, 1988; Moffatt et al., 2002), and their mutants cause reductions in fertility or sterility, changes in transmethylation, and the formation of abnormal cell walls. In addition, both enzymes were also reported to play roles in cytokinin metabolism (Moffatt et al., 1991, 2000; von Schwartzenberg et al., 1998; Schoor et al., 2011). Cytokinins (N6-substituted adenine derivatives) are plant hormones that regulate cell division and numerous developmental events (Mok and Mok, 2001; Sakakibara, 2006). Cytokinin ribosides are considered to be transport forms and have little or no activity.Open in a separate windowFigure 1.A, Scheme of the reactions catalyzed by plant NRHs when using purine (inosine), pyrimidine (uridine), and cytokinin (iPR) ribosides as the substrates. B, Simplified schematic overview of cytokinin, purine, and pyrimidine metabolism in plants. The diagram is adapted from the work of Stasolla et al. (2003) and Zrenner et al. (2006) with modifications. The metabolic components shown are as follows: 1, cytokinin nucleotide phosphoribohydrolase; 2, adenine phosphoribosyltransferase; 3, adenosine kinase; 4, 5′-nucleotidase; 5, adenosine phosphorylase; 6, purine/pyrimidine nucleoside ribohydrolase; 7, cytokinin oxidase/dehydrogenase; 8, AMP deaminase; 9, hypoxanthine phosphoribosyltransferase; 10, inosine kinase; 11, inosine-guanosine phosphorylase; 12, IMP dehydrogenase; 13, xanthine dehydrogenase; 14, 5′-nucleotidase; 15, GMP synthase; 16, hypoxanthine-guanine phosphoribosyltransferase; 17, guanosine deaminase; 18, guanine deaminase; 19, guanosine kinase; 20, uracil phosphoribosyltransferase; 21, uridine cytidine kinase; 22, pyrimidine 5′-nucleotidase; 23, cytidine deaminase; 24, adenosine/adenine deaminase. CK, Cytokinin; CKR, cytokinin riboside; CKRMP, cytokinin riboside monophosphate.NRHs are metalloproteins first identified and characterized in parasitic protozoa such as Trypanosoma, Crithidia, and Leishmania species that rely on the import and salvage of nucleotide derivatives. They have since been characterized in other organisms such as bacteria, yeast, and insects (Versées and Steyaert, 2003) but never in mammals (Parkin et al., 1991). They have been divided into four classes based on their substrate specificity: nonspecific NRHs, which hydrolyze inosine and uridine (IU-NRHs; Parkin et al., 1991; Shi et al., 1999); purine-specific inosine/adenosine/guanosine NRHs (Parkin, 1996); the 6-oxopurine-specific guanosine/inosine NRHs (Estupiñán and Schramm, 1994); and the pyrimidine nucleoside-specific cytidine/uridine NRHs (CU-NRHs; Giabbai and Degano, 2004). All NRHs exhibit a stringent specificity for the Rib moiety and differ in their preferences regarding the nature of the nucleobase. Crystal structures are available for empty NRH or in complex with inhibitors from Crithidia fasciculata (CfNRH; Degano et al., 1998), Leishmania major (LmNRH; Shi et al., 1999), and Trypanosoma vivax (TvNRH; Versées et al., 2001, 2002). The structures of two CU-NRHs from Escherichia coli, namely YeiK (Iovane et al., 2008) and YbeK (rihA; Muzzolini et al., 2006; Garau et al., 2010), are also available. NRHs are believed to catalyze N-glycosidic bond cleavage by a direct displacement mechanism. An Asp from a conserved motif acts as a general base and abstracts a proton from a catalytic water molecule, which then attacks the C1′ atom of the Rib moiety of the nucleoside. Kinetic isotope-effect studies on CfNRH (Horenstein et al., 1991) showed that the substrate’s hydrolysis proceeds via an oxocarbenium ion-like transition state and is preceded by protonation at the N7 atom of the purine ring, which lowers the electron density on the purine ring and destabilizes the N-glycosidic bond. A conserved active-site His is a likely candidate for this role in IU-NRHs and CU-NRHs. In the transition state, the C1′-N9 glycosidic bond is almost 2 Å long, with the C1′ atom being sp2 hybridized while the C3′ atom adopts an exo-conformation, and the whole ribosyl moiety carries a substantial positive charge (Horenstein et al., 1991).Several NRH enzymes have been identified in plants, including a uridine-specific NRH from mung bean (Phaseolus radiatus; Achar and Vaidyanathan, 1967), an inosine-specific NRH (EC 3.2.2.2) and a guanosine-inosine-specific NRH, both from yellow lupine (Lupinus luteus; Guranowski, 1982; Szuwart et al., 2006), and an adenosine-specific NRH (EC 3.2.2.7) from coffee (Coffea arabica), barley (Hordeum vulgare), and wheat (Triticum aestivum; Guranowski and Schneider, 1977; Chen and Kristopeit, 1981; Campos et al., 2005). However, their amino acid sequences have not been reported so far. A detailed study of the NRH gene family from Arabidopsis (Arabidopsis thaliana) has recently been reported (Jung et al., 2009, 2011). The AtNRH1 enzyme exhibits highest hydrolase activity toward uridine and xanthosine. It can also hydrolyze the cytokinin riboside N6-(2-isopentenyl)adenosine (iPR), which suggests that it may also play a role in cytokinin homeostasis. However, Riegler et al. (2011) analyzed the phenotypes of homozygous nrh1 and nrh2 single mutants along with the homozygous double mutants and concluded that AtNRHs are probably unimportant in cytokinin metabolism.Here, we identify and characterize plant IU-NRHs from two different model organisms, Physcomitrella patens and maize (Zea mays), combining structural, enzymatic, and in planta functional approaches. The moss P. patens was chosen to represent the bryophytes, which can be regarded as being evolutionarily basal terrestrial plants, and is suitable for use in developmental and metabolic studies (Cove et al., 2006; von Schwartzenberg, 2009), while maize is an important model system for cereal crops. We report the crystal structures of NRH enzymes from the two plant species, PpNRH1 and ZmNRH3. Based on these structures, we performed site-directed mutagenesis experiments and kinetic analyses of point mutants of PpNRH1 in order to identify key residues involved in nucleobase interactions and catalysis. To analyze the physiological role of the PpNRHs, single knockout mutants were generated. NRH deficiency caused significant changes in the levels of purine, pyrimidine, and cytokinin metabolites relative to those seen in the wild type, illustrating the importance of these enzymes in nucleoside and cytokinin metabolism.  相似文献   
4.
Endosymbiotic bacteria are important drivers of insect evolutionary ecology, acting both as partners that contribute to host adaptation and as subtle parasites that manipulate host reproduction. Among them, the genus Arsenophonus is emerging as one of the most widespread lineages. Its biology is, however, entirely unknown in most cases, and it is therefore unclear how infections spread through insect populations. Here we examine the incidence and evolutionary history of Arsenophonus in aphid populations from 86 species, characterizing the processes that shape their diversity. We identify aphids as harbouring an important diversity of Arsenophonus strains. Present in 7% of the sampled species, incidence was especially high in the Aphis genus with more than 31% of the infected species. Phylogenetic investigations revealed that these Arseno‐phonus strains do not cluster within an aphid‐specific clade but rather exhibit distinct evolutionary origins showing that they undergo repeated horizontal transfers (HT) between distantly related host species. Their diversity pattern strongly suggests that ecological interactions, such as plant mediation and parasitism, are major drivers for Arsenophonus dispersal, dictating global incidence across insect communities. Notably, plants hosting aphids may be important ecological arenas for global exchange of Arsenophonus, serving as reservoirs for HT.  相似文献   
5.
Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.  相似文献   
6.
Cases of emergence of novel plant-pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non-pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non-pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild-type, non-pathogenic strains induced a hypersensitive response (HR)-like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non-pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non-pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter-selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.  相似文献   
7.
Abstract

The development of more sustainable remediation techniques has been receiving greater attention, as an alternative to soil excavation plan in urban gardens. An in situ phytoextraction experiment with buckwheat (Fagopyrum esculentum) was performed with a 5?mmol kg?1 citric acid (CA) application. Joint experiments under laboratory conditions were conducted using various cultivars of F. esculentum in two soils with a Pb contamination of either geogenic or anthropogenic origin and various chelate concentrations. Results show that a minimum dose of 50?mmol kg?1 of CA is required to lower soil pH and raise the concentration of mobile Pb–CaCl2 for both soils. Consequently, Pb shoot uptake is increased from 6.3 to 8.9 times depending on soil type. Phytoextraction efficiency is found to be 1.3 to 2.0 times higher in the anthropogenic contaminated soil than in the soil with geogenic Pb. A scale effect has also been identified since Pb root accumulation under laboratory conditions was 2.4 times higher than in the field experiment. Despite an increase in the Pb extraction rate with CA, buckwheat appears to lack the efficiency needed to remove Pb in moderately contaminated soils. The calculated remediation period would last 166?years to remove the mobile Pb fraction.  相似文献   
8.
9.
In recent years, the diagnostic and therapeutic uses of radioisotopes have shown significant progress. Immunoglobulin (Ig) appears to be a promising tracer, particularly due to its ability to target selected antigens. The main objective of this study is to optimize and assess an Ig radiolabeling method with Technetium 99m (99mTc), an attractive radioelement used widely for diagnostic imaging. Monoclonal anti-CD20 IgG was retained to study in vitro and in vivo radiolabeling impact. After IgG derivatization with 2-iminothiolane, IgG-SH was radiolabeled by an indirect method, using a 99mTc-tricarbonyl core. Radiolabeling stability was evaluated over 24h by thin-layer chromatography. IgG integrity was checked by sodium dodecyl sulfate—polyacrylamide gel electrophoresis coupled with Western blot and autoradiography. The radiolabeled Ig’s immunoaffinity was assessed in vitro by a radioimmunoassay method and binding experiments with cells (EL4-hCD20 and EL4-WT). Biodistribution studies were performed in normal BALB/c mice. Tumor uptake was assessed in mice bearing EL4-hCD20 and EL4-WT subcutaneous xenografts. With optimized method, high radiolabeling yields were obtained (95.9 ± 3.5%). 99mTc-IgG-SH was stable in phosphate-buffered saline (4°C and 25°C) and in serum (37°C), even if important sensitivity to transchelation was observed. IgG was not degraded by derivatization and radiolabeling, as shown by Western blot and autoradiography results. 99mTc-anti-CD20 IgG-SH immunoaffinity was estimated with Kd = 35 nM by both methods. In vivo biodistribution studies for 48h showed significant accumulation of radioactivity in plasma, liver, spleen, lungs and kidneys. Planar scintigraphy of mice bearing tumors showed a significant uptake of 99mTc-anti-CD20 IgG-SH in CD20+ tumor versus CD20- tumor. Radiolabeling of derivatized IgG with 99mTc-tricarbonyl was effective, stable and required few antibody amounts. This attractive radiolabeling method is “antibody safe” and preserves Ig affinity for antigen, as shown by both in vitro and in vivo experiments. This method could easily be used with noncommercial IgG or other antibody isotypes.  相似文献   
10.
The arbuscular mycorrhizal (AM) symbiosis belongs to the strategies plants have developed to cope with adverse environmental conditions including contamination by heavy metals such as cadmium (Cd). In the present work, we report on the protective effect conferred by AM symbiosis to the model legume Medicago truncatula grown in presence of Cd, and on the 2‐D‐based proteomic approach further used to compare the proteomes of M. truncatula roots either colonised or not with the AM fungus Glomus intraradices in Cd‐free and Cd‐contaminated substrates. The results indicated that at the proteome level, 9 out of the 15 cadmium‐induced changes in nonmycorrhizal roots were absent or inverse in those Cd‐treated and colonized by G. intraradices, including the G. intraradices‐dependent down‐accumulation of Cd stress‐responsive proteins. Out of the twenty‐six mycorrhiza‐related proteins that were identified, only six displayed changes in abundance upon Cd exposure, suggesting that part of the symbiotic program, which displays low sensitivity to Cd, may be recruited to counteract Cd toxicity through the mycorrhiza‐dependent synthesis of proteins having functions putatively involved in alleviating oxidative damages, including a cyclophilin, a guanine nucleotide‐binding protein, an ubiquitin carboxyl‐terminal hydrolase, a thiazole biosynthetic enzyme, an annexin, a glutathione S‐transferase (GST)‐like protein, and a S‐adenosylmethionine (SAM) synthase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号