首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6419篇
  免费   468篇
  国内免费   2篇
  2023年   48篇
  2022年   48篇
  2021年   180篇
  2020年   126篇
  2019年   148篇
  2018年   189篇
  2017年   181篇
  2016年   290篇
  2015年   384篇
  2014年   407篇
  2013年   447篇
  2012年   618篇
  2011年   516篇
  2010年   301篇
  2009年   288篇
  2008年   366篇
  2007年   325篇
  2006年   324篇
  2005年   301篇
  2004年   278篇
  2003年   260篇
  2002年   222篇
  2001年   48篇
  2000年   37篇
  1999年   54篇
  1998年   55篇
  1997年   46篇
  1996年   37篇
  1995年   33篇
  1994年   33篇
  1993年   33篇
  1992年   25篇
  1991年   23篇
  1990年   20篇
  1989年   12篇
  1988年   14篇
  1987年   8篇
  1986年   15篇
  1985年   19篇
  1984年   10篇
  1983年   12篇
  1982年   16篇
  1981年   14篇
  1980年   6篇
  1978年   10篇
  1977年   7篇
  1975年   5篇
  1973年   5篇
  1969年   5篇
  1968年   7篇
排序方式: 共有6889条查询结果,搜索用时 31 毫秒
1.
2.
The analysis of peripheral endocannabinoids (ECs) is a good biomarker of the EC system. Their concentrations, from clinical studies, strongly depend on sample collection and time processing conditions taking place in clinical and laboratory settings. The analysis of 2-monoacylglycerols (MGs) (i.e., 2-arachidonoylglycerol or 2-oleoylglycerol) is a particularly challenging issue because of their ex vivo formation and chemical isomerization that occur after blood sample collection. We provide evidence that their ex vivo formation can be minimized by adding Orlistat, an enzymatic lipase inhibitor, to plasma. Taking into consideration the low cost of Orlistat, we recommend its addition to plasma collecting tubes while maintaining sample cold chain until storage. We have validated a method for the determination of the EC profile of a range of MGs and N-acylethanolamides in plasma that preserves the original isomer ratio of MGs. Nevertheless, the chemical isomerization of 2-MGs can only be avoided by an immediate processing and analysis of samples due to their instability during conservation. We believe that this new methodology can aid in the harmonization of the measurement of ECs and related compounds in clinical samples.  相似文献   
3.
4.
5.
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.  相似文献   
6.
We have used diffusion and branching process methods to investigate fixation rates, probabilities of survival per generation, and times to fixation of mutant genes under different selection methods incorporating individual and family information. Diffusion approximations fit well to simulated results even for large selection coefficients. Methods that give much weight to family information, such as BLUP evaluation which is widely used in animal breeding, reduce fixation rates of mutant genes because of the reduced effective population sizes. In general, it is observed that even mutants with relatively small heterozygous effects (say 0.1 phenotypic standard deviation) are practically ‘safe’ (i.e. their probability of loss from one generation to the next is smaller than, say, 10%) after just a few generations, typically less than 10. For methods of selection with larger effective size, such as within-family selection, the mutant is ‘safe’ in the population somewhat earlier but eventual fixation takes a longer time. Finally we evaluate the amount by which the use of marker assisted selection reduces the fixation probability of newly arisen mutants.  相似文献   
7.
8.
The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis.  相似文献   
9.
The polyamine biosynthetic enzyme, S-adenosylmethionine decarboxylase (ADOMETDC) has been advanced as a potential target for antiparasitic chemotherapy. To investigate the importance of this protein in a model parasite, the gene encoding ADOMETDC has been cloned and sequenced from Leishmania donovani. The Delta adometdc null mutants were created in the insect vector form of the parasite by double targeted gene replacement. The Delta adometdc strains were incapable of growth in medium without polyamines; however, auxotrophy could be rescued by spermidine but not by putrescine, spermine, or methylthioadenosine. Incubation of Delta adometdc parasites in medium lacking polyamines resulted in a drastic increase of putrescine and glutathione levels with a concomitant decrease in the amounts of spermidine and the spermidine-containing thiol trypanothione. Parasites transfected with an episomal ADOMETDC construct were created in both wild type and Delta adometdc parasites. ADOMETDC overexpression abrogated polyamine auxotrophy in the Delta adometdc L. donovani. In addition, ADOMETDC overproduction in wild type parasites alleviated the toxic effects of 5'-(((Z)-4-amino-2-butenyl)methylamino)-5'-deoxyadenosine (MDL 73811), but not pentamidine, berenil, or methylglyoxyl bis(guanylhydrazone), all inhibitors of ADOMETDC activities in vitro. The molecular, biochemical, and genetic characterization of ADOMETDC establishes that it is essential in L. donovani promastigotes and a potential target for therapeutic validation.  相似文献   
10.
Mutational fitness effects can be measured with relatively high accuracy in viruses due to their small genome size, which facilitates full-length sequencing and genetic manipulation. Previous work has shown that animal and plant RNA viruses are very sensitive to mutation. Here, we characterize mutational fitness effects in single-stranded (ss) DNA and ssRNA bacterial viruses. First, we performed a mutation-accumulation experiment in which we subjected three ssDNA (ΦX174, G4, F1) and three ssRNA phages (Qβ, MS2, and SP) to plaque-to-plaque transfers and chemical mutagenesis. Genome sequencing and growth assays indicated that the average fitness effect of the accumulated mutations was similar in the two groups. Second, we used site-directed mutagenesis to obtain 45 clones of ΦX174 and 42 clones of Qβ carrying random single-nucleotide substitutions and assayed them for fitness. In ΦX174, 20% of such mutations were lethal, whereas viable ones reduced fitness by 13% on average. In Qβ, these figures were 29% and 10%, respectively. It seems therefore that high mutational sensitivity is a general property of viruses with small genomes, including those infecting animals, plants, and bacteria. Mutational fitness effects are important for understanding processes of fitness decline, but also of neutral evolution and adaptation. As such, these findings can contribute to explain the evolution of ssDNA and ssRNA viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号