首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   130篇
  国内免费   7篇
  2024年   1篇
  2023年   8篇
  2022年   14篇
  2021年   66篇
  2020年   32篇
  2019年   49篇
  2018年   54篇
  2017年   53篇
  2016年   62篇
  2015年   95篇
  2014年   99篇
  2013年   104篇
  2012年   137篇
  2011年   154篇
  2010年   89篇
  2009年   85篇
  2008年   103篇
  2007年   122篇
  2006年   119篇
  2005年   107篇
  2004年   107篇
  2003年   92篇
  2002年   75篇
  2001年   14篇
  2000年   2篇
  1999年   7篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   7篇
排序方式: 共有1932条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Broad host range vectors derived from an RSF1010::Tn1 plasmid   总被引:2,自引:0,他引:2  
  相似文献   
5.
Evolutionary relationships of eukaryotic kingdoms   总被引:5,自引:0,他引:5  
The evolutionary relationships of four eukaryotic kingdoms—Animalia, Plantae, Fungi, and Protista—remain unclear. In particular, statistical support for the closeness of animals to fungi rather than to plants is lacking, and a preferred branching order of these and other eukaryotic lineages is still controversial even though molecular sequences from diverse eukaryotic taxa have been analyzed. We report a statistical analysis of 214 sequences of nuclear small-subunit ribosomal RNA (srRNA) gene undertaken to clarify these evolutionary relationships. We have considered the variability of substitution rates and the nonindependence of nucleotide substitution across sites in the srRNA gene in testing alternative hypotheses regarding the branching patterns of eukaryote phylogeny. We find that the rates of evolution among sites in the srRNA sequences vary substantially and are approximately gamma distributed with size and shape parameter equal to 0.76. Our results suggest that (1) the animals and true fungi are indeed closer to each other than to any other crown group in the eukaryote tree, (2) red algae are the closest relatives of animals, true fungi, and green plants, and (3) the heterokonts and alveolates probably evolved prior to the divergence of red algae and animal-fungus-green-plant lineages. Furthermore, our analyses indicate that the branching order of the eukaryotic lineages that diverged prior to the evolution of alveolates may be generally difficult to resolve with the srRNA sequence data.  相似文献   
6.
Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.  相似文献   
7.
Summary Cytosolic proteins as components of the physiological mitochondrial environment were substituted by dextrans added to media normally used for incubation of isolated mitochondria. Under these conditions the volume of the intermembrane space decreases and the contact sites between the both mitochondrial membranes increase drastically. These morphological changes are accompanied by a reduced permeability of the mitochondrial outer compartment for adenine nucleotides as it was shown by extensive kinetic studies of mitochondrial enzymes (oxidative phosphorylation, mi-creatine kinase, mi-adenylate kinase). The decreased permeability of the mitochondrial outer membrane causes increased rate dependent concentration gradients in the micromolar range for adenine nucleotides between the intermembrane space and the extramitochondrial space. Although all metabolites crossing the outer membrane exhibit the same concentration gradients, considerable compartmentations are detectable for ADP only due to its low extramitochondrial concentration. The consequences of ADP-compartmentation in the mitochondrial intermembrane space for ADP-channelling into the mitochondria are discussed.  相似文献   
8.
In our previous work [(1993) FEBS Lett. 313, 248-250; (1993) Biochem. Int. 30,461-469] M-intermediate formation of wild-type bacteriorhodopsin was shown to involve two components differing in time constants (τ1 = 60–70 μs and τ2 = 220–250 μs), which were suggested to reflect two independent pathways of M-intermediate formation. The contribution of the fast M was 4-times higher than the slow one. Our present research on M-intermediate formation in the D115N bacteriorhodopsin mutant revealed the same components but at a contribution ratio of 1:1. Upon lowering the pH, the slow phase of M-formation vanished at a pK of 6.2, and in the pH region 3.0–5.5 only the M-intermediate with a rise time of 60 μs was present. A 5–6 h incubation of D115N bacteriorhodopsin at pH 10.6 resulted in the irreversible transformation of 50% of the protein into a form with a difference absorbance maximum at 460 nm. This form was stable at pH 7.5 and had no photocycle, including M-intermediate formation. The remaining bacteriorhodopsin contained 100% fast M-intermediate. The disappearance of the 250-μs phase concomitant with bR460 formation indicates that at neutral pH bacteriorhodopsin exists as two spectroscopically indistinguishable forms.  相似文献   
9.
Estimation of evolutionary distances between nucleotide sequences   总被引:11,自引:0,他引:11  
A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414–422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269–285, 1984) method is superior to others.  相似文献   
10.
The evolutionary position of the yew family, Taxaceae, has been very controversial. Some plant taxonomists strongly advocate excluding Taxaceae from the conifer order and raising its taxonomic status to a new order or even class because of its absence of seed cones, contrary to the case in the majority of conifers. However, other authors believe that the Taxaceae are not fundamentally different from the rest of the conifers except in that they possess the most reduced solitary-ovule cones. To resolve the controversy, we have sequenced the 18S rRNA genes from representative gymnosperms: Taxus mairei (Taxaceae), Podocarpus nakaii (Podocarpaceae), Pinus luchuensis (Pinaceae), and Ginkgo biloba (Ginkgoales). Our phylogenetic analysis of the new sequence data with the published 18S rRNA sequence of Zamia pumila (a cycad) as an outgroup strongly indicates that Taxus, Pinus, and Podocarpus form a monophyletic group with the exclusion of Ginkgo and that Taxus is more closely related to Pinus than to Podocarpus. Therefore, Taxaceae should be classified as a family of Coniferales. Our finding that Taxaceae, Pinaceae, and Podocarpaceae form a clade contradicts both the view that the uniovulate seed of Taxaceae is a primitive character and the view that the Taxaceae are descendants of the Podocarpaceae. Rather, the uniovulate seed of Taxaceae and that of some species of Podocarpus appear to have different origins, probably all reduced from multiovulate cones. Correspondence to: W.-H. Li  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号