首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15310篇
  免费   1067篇
  国内免费   1篇
  2023年   108篇
  2022年   102篇
  2021年   435篇
  2020年   297篇
  2019年   361篇
  2018年   451篇
  2017年   417篇
  2016年   642篇
  2015年   956篇
  2014年   1024篇
  2013年   1270篇
  2012年   1490篇
  2011年   1347篇
  2010年   845篇
  2009年   717篇
  2008年   889篇
  2007年   866篇
  2006年   811篇
  2005年   661篇
  2004年   629篇
  2003年   556篇
  2002年   445篇
  2001年   96篇
  2000年   70篇
  1999年   100篇
  1998年   83篇
  1997年   75篇
  1996年   55篇
  1995年   48篇
  1994年   56篇
  1993年   38篇
  1992年   38篇
  1991年   25篇
  1990年   30篇
  1989年   25篇
  1988年   14篇
  1987年   27篇
  1986年   21篇
  1985年   20篇
  1984年   24篇
  1983年   18篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   11篇
  1978年   15篇
  1977年   17篇
  1975年   19篇
  1973年   11篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
1.
2.
Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions.  相似文献   
3.
Aim The question of how much of the shared geographical distribution of biota is due to environmental vs. historical constraints remains unanswered. The aim of this paper is to disentangle the contribution of historical vs. contemporary factors to the distribution of freshwater fish species. In addition, it illustrates how quantifying the contribution of each type of factor improves the classification of biogeographical provinces. Location Iberian Peninsula, south‐western Europe (c. 581,000 km2). Methods We used the most comprehensive data on native fish distributions for the Iberian Peninsula, compiled from Portuguese and Spanish sources on a 20‐km grid‐cell resolution. Overall, 58 species were analysed after being categorized into three groups according to their ability to disperse through saltwater: (1) species strictly intolerant of saltwater (primary species); (2) species partially tolerant of saltwater, making limited incursions into saltwaters (secondary species); and (3) saltwater‐tolerant species that migrate back and forth from sea to freshwaters or have invaded freshwaters recently (peripheral species). Distance‐based multivariate analyses were used to test the role of historical (basin formation) vs. contemporary environmental (climate) conditions in explaining current patterns of native fish assemblage composition. Cluster analyses were performed to explore species co‐occurrence patterns and redefine biogeographical provinces based on the distributions of fishes. Results River basin boundaries were better at segregating species composition for all species groups than contemporary climate variables. This historical signal was especially evident for primary and secondary freshwater fishes. Eleven biogeographical provinces were delineated. Basins flowing to the Atlantic Ocean north of the Tagus Basin and those flowing to the Mediterranean Sea north of the Mijares Basin were the most dissimilar group. Primary and secondary freshwater species had higher province fidelity than peripheral species. Main conclusions The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns.  相似文献   
4.
Regulation of adenylate cyclase in E. coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The intracellular concentrations of cAMP in Escherichia coli are regulated mainly by control of the activity of adenylate cyclase. Withdrawal of the carbon source from the growth medium causes a gradual reduction of cellular energy and a dramatic stimulation of cyclase activity. Manipulations of the proton gradient at the cell membrane of ATP synthase-deficient E. coli (unc-) revealed that this part of the energy compartment is not responsible for the starvation-induced stimulation of cyclase. Neither is the ATP pool involved in regulation of the activity of the cyclase. The intracellular concentrations of ATP were experimentally lowered by purine starvation of auxotrophs, by inhibition of purine synthesis using amethopterin, or by affecting ATP synthesis using arsenate. None of these conditions led to stimulation of cyclase activity. The control of cyclase is exerted not via the energy pools but via uptake systems of energy substrates independent of whether the substrate can be metabolized or not, or how the transport is energized. The stringent coupling between these transport systems and cyclase activity enables the cell to react instantaneously to changes in its environment.  相似文献   
5.
6.
Tandemly arrayed non-coding sequences or satellite DNAs (satDNAs) are rapidly evolving segments of eukaryotic genomes, including the centromere, and may raise a genetic barrier that leads to speciation. However, determinants and mechanisms of satDNA sequence dynamics are only partially understood. Sequence analyses of a library of five satDNAs common to the root-knot nematodes Meloidogyne chitwoodi and M. fallax together with a satDNA, which is specific for M. chitwoodi only revealed low sequence identity (32–64%) among them. However, despite sequence differences, two conserved motifs were recovered. One of them turned out to be highly similar to the CENP-B box of human alpha satDNA, identical in 10–12 out of 17 nucleotides. In addition, organization of nematode satDNAs was comparable to that found in alpha satDNA of human and primates, characterized by monomers concurrently arranged in simple and higher-order repeat (HOR) arrays. In contrast to alpha satDNA, phylogenetic clustering of nematode satDNA monomers extracted either from simple or from HOR array indicated frequent shuffling between these two organizational forms. Comparison of homogeneous simple arrays and complex HORs composed of different satDNAs, enabled, for the first time, the identification of conserved motifs as obligatory components of monomer junctions. This observation highlights the role of short motifs in rearrangements, even among highly divergent sequences. Two mechanisms are proposed to be involved in this process, i.e., putative transposition-related cut-and-paste insertions and/or illegitimate recombination. Possibility for involvement of the nematode CENP-B box-like sequence in the transposition-related mechanism and together with previously established similarity of the human CENP-B protein and pogo-like transposases implicate a novel role of the CENP-B box and related sequence motifs in addition to the known function in centromere protein binding.  相似文献   
7.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
8.
We have shown previously by electron microscopy that the purified glutathione S-transferase (GST)-Huntington's disease (HD) exon 1 fusion protein with 51 glutamine residues (GST-HD51) is an oligomer, and that site-specific proteolytic cleavage of this fusion protein results in the formation of insoluble more highly ordered protein aggregates with a fibrillar or ribbon-like morphology (E. Scherzinger et al. (1997) Cell 90, 549-558). Here we report that a truncated GST HD exon 1 fusion protein with 51 glutamine residues, which lacks the proline-rich region C-terminal to the polyglutamine (polyQ) tract (GST-HD51 delta P) self-aggregates into high-molecular-mass protein aggregates without prior proteolytic cleavage. Electron micrographs of these protein aggregates revealed thread-like fibrils with a uniform diameter of ca. 25 nm. In contrast, proteolytic cleavage of GST-HD51 delta P resulted in the formation of numerous clusters of high-molecular-mass fibrils with a different, ribbon-like morphology. These structures were reminiscent of prion rods and beta-amyloid fibrils in Alzheimer's disease. In agreement with our previous results with full-length GST-HD exon 1, the truncated fusion proteins GST-HD20 delta P and GST-HD30 delta P did not show any tendency to form more highly ordered structures, either with or without protease treatment.  相似文献   
9.
Although it is generally assumed that among mammals and within mammal groups, those species that rely on diets consisting of greater amounts of plant fiber have larger gastrointestinal tracts (GIT), statistical evidence for this simple claim is largely lacking. We compiled a dataset on the length of the small intestine, caecum, and colon in 42 strepsirrhine, platyrrhine, and catarrhine primate species, using specimens with known body mass (BM). We tested the scaling of intestine length with BM, and whether dietary proxies (percentage of leaves and a diet quality index) were significant covariates in these scaling relationships, using two sets of models: one that did not account for the phylogenetic structure of the data, and one that did. Intestine length mainly scaled geometrically at exponents that included 0.33 in the confidence interval; Strepsirrhini exhibited particularly long caeca, while those of Catarrhini were comparatively short. Diet proxies were only significant for the colon and the total large intestine (but not for the small intestine or the caecum), and only in conventional statistics (but not when accounting for phylogeny), indicating the pattern occurred across but not within clades. Compared to terrestrial Carnivora, primates have similar small intestine lengths, but longer large intestines. The data on intestine lengths presented here corroborate recent results on GIT complexity, suggesting that diet, as currently described, does not exhaustively explain GIT anatomy within primate clades.  相似文献   
10.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号