首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   19篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   10篇
  2013年   12篇
  2012年   24篇
  2011年   25篇
  2010年   14篇
  2009年   12篇
  2008年   17篇
  2007年   16篇
  2006年   15篇
  2005年   15篇
  2004年   2篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1973年   2篇
  1966年   1篇
排序方式: 共有267条查询结果,搜索用时 31 毫秒
1.
M Sharan  B Singh 《Bio Systems》1990,24(3):209-214
A numerical model is described for the oxygenation of blood in lung capillaries by considering the transport mechanisms of molecular diffusion, convection and the facilitated diffusion due to the presence of haemoglobin. In order to represent the oxygen dissociation curve accurately in the model, the nth order one-step kinetics of oxygen uptake by haemoglobin has been used. The resulting system of coupled, non-linear partial differential equations is solved numerically. It is shown that the blood is required to traverse a larger distance in the capillary before becoming fully oxygenated with nth order one-step kinetics in comparison to first-order one-step kinetics.  相似文献   
2.
3.
Various studies in unicellular and multicellular organisms have shown that codon bias plays a significant role in translation efficiency (TE) by co-adaptation to the tRNA pool. Yet, in humans and other mammals the role of codon bias is still an open question, with contradictory results from different studies. Here we address this question, performing a large-scale tissue-specific analysis of TE in humans, using the tRNA Adaptation Index (tAI) as a direct measure for TE. We find tAI to significantly correlate with expression levels both in tissue-specific and in global expression measures, testifying to the TE of human tissues. Interestingly, we find significantly higher correlations in adult tissues as opposed to fetal tissues, suggesting that the tRNA pool is more adjusted to the adult period. Optimization based analysis suggests that the tRNA pool—codon bias co-adaptation is globally (and not tissue-specific) driven. Additionally, we find that tAI correlates with several measures related to the protein functionally importance, including gene essentiality. Using inferred tissue-specific tRNA pools lead to similar results and shows that tissue-specific genes are more adapted to their tRNA pool than other genes and that related sets of functional gene groups are translated efficiently in each tissue. Similar results are obtained for other mammals. Taken together, these results demonstrate the role of codon bias in TE in humans, and pave the way for future studies of tissue-specific TE in multicellular organisms.  相似文献   
4.
The process of gas exchange in systemic capillaries and its surrounding tissue is simulated numerically in a hyperbaric environment, taking into account the molecular diffusion, convection, saturation of haemoglobin with O2 and CO2, and the metabolic activity in the tissue. Krogh tissue-cylinder is used as a geometrical representation of the capillary-tissue system. The resulting system of non-linear governing equations together with the physiologically relevant boundary conditions is solved numerically. It is found that the concentration of oxygen decreases from the axis of the capillary to the tissue periphery whereas the concentration of carbon dioxide increases. It is shown that very little CO2 is transported radially. The location of the vulnerable region from the point of view of CO2 accumulation is found to be the rim (r = R2, z = L) situated at the periphery of the tissue near the venous end of the capillary. It is also found that accumulation of O2 decreases whereas that of CO2 increases in a hyperbaric environment. Finally, it is surmised that one of the reasons in causing discomfort among divers could be excessive accumulation of CO2 in the tissue.  相似文献   
5.
Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network.  相似文献   
6.
Myotonic dystrophy (DM1) is a highly variable, multi-system disorder resulting from the expansion of an untranslated CTG tract in DMPK. In DM1 expanded CUG repeat RNAs form hairpin secondary structures that bind and aberrantly sequester the RNA splice regulator, MBNL1. RNA splice defects resulting as a consequence of MBNL1 depletion have been shown to play a key role in the development of DM1 pathology. In patient populations, both the number and severity of DM1 symptoms increase broadly as a function of CTG tract length. However significant variability in the DM1 phenotype is observed in patients encoding similar CTG repeat numbers. Here we demonstrate that a gradual decrease in MBNL1 levels results both in the expansion of the repertoire of splice defects and an increase in the severity of the splice alterations. Thus, MBNL1 loss does not have an all or none outcome but rather shows a graded effect on the number and severity of the ensuing splice defects. Our results suggest that once a critical threshold is reached, relatively small dose variations of free MBNL1 levels, which may reflect modest changes in the size of the CUG tract or the extent of hairpin secondary structure formation, can significantly alter the number and severity of splice abnormalities and thus contribute to the phenotype variability observed in DM1 patients.  相似文献   
7.
Recent studies have emphasized the important role of microRNA (miRNA) clusters and common target genes in disease progression. Despite the known involvement of the miR‐192/215 family in many human diseases, its biological role in Hirschsprung disease (HSCR) remains undefined. In this study, we explored the role of the miR‐192/215 family in the pathogenesis of HSCR. Quantitative real‐time PCR and western blotting measured relative expression levels of miRNAs, mRNAs, and proteins in 80 HSCR patients and 77 normal colon tissues. Targets were evaluated by dual‐luciferase reporter assays, and the functional effects of miR‐192/215 on human 293T and SH‐SY5Y cells were detected by the Transwell assay, CCK8 assay and flow cytometry. MiR‐192/215 was significantly down‐regulated in HSCR tissue samples, and their knockdown inhibited cell migration and proliferation in the human 293T and SH‐SY5Y cell lines. Nidogen 1 (NID1) was confirmed as a common target gene of miR‐192/215 by dual‐luciferase reporter gene assay and its expression was inversely correlated with that of miR‐192/215 in tissue samples and cell lines. Silencing of NID1 could rescue the extent of the suppressing effects by miR‐192/215 inhibitor. The down‐regulation of miR‐192/215 may contribute to HSCR development by targeting NID1.

  相似文献   

8.
Cost‐effective production of fuels and chemicals from lignocellulosic biomass often involves enzymatic saccharification, which has been the subject of intense research and development. Recently, a mechanistic model for the enzymatic saccharification of cellulose has been developed that accounts for distribution of cellulose chain lengths, the accessibility of insoluble cellulose to enzymes, and the distinct modes of action of the component cellulases [Griggs et al. (2012) Biotechnol. Bioeng., 109(3):665–675; Griggs et al. (2012) Biotechnol. Bioeng., 109(3):676–685]. However, determining appropriate values for the adsorption, inhibition, and rate parameters required further experimental investigation. In this work, we performed several sets of experiments to aid in parameter estimation and to quantitatively validate the model. Cellulosic materials differing in degrees of polymerization and crystallinity (α‐cellulose‐Iβ and highly crystalline cellulose‐Iβ) were digested by component enzymes (EGI/CBHI/ ) and by mixtures of these enzymes. Based on information from the literature and the results from these experiments, a single set of model parameters was determined, and the model simulation results using this set of parameters were compared with the experimental data of total glucan conversion, chain‐length distribution, and crystallinity. Model simulations show significant agreement with the experimentally derived glucan conversion and chain‐length distribution curves and provide interesting insights into multiple complex and interacting physico‐chemical phenomena involved in enzymatic hydrolysis, including enzyme synergism, substrate accessibility, cellulose chain length distribution and crystallinity, and inhibition of cellulases by soluble sugars. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1237–1248, 2015  相似文献   
9.
A rapid, sensitive and cost-effective method was developed for detection of foodborne pathogens, particularly Salmonella species. The method utilizes single stranded DNA (ssDNA) probes and non-functionalized gold nanoparticles to provide a colorimetric assay for the detection of PCR amplified DNA. Different food samples were tested with the PCR-based colorimetric assay parallel with the conventional culture method. The sensitivity and specificity of colorimetric assay was 89.15 and 99.04% respectively with reference to conventional culture method. The total time required to detect the Salmonella spp. present in food samples by the developed method is less than 8 h, including 6 h incubation. It was observed that the colorimetric assay was 10 times more sensitive than gel-based detection with the same concentration of DNA used for analysis.  相似文献   
10.
Roded Sharan 《EMBO reports》2013,14(11):948-948
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号