首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23060篇
  免费   2221篇
  国内免费   15篇
  2023年   110篇
  2022年   89篇
  2021年   569篇
  2020年   292篇
  2019年   415篇
  2018年   465篇
  2017年   373篇
  2016年   632篇
  2015年   1078篇
  2014年   1097篇
  2013年   1497篇
  2012年   1723篇
  2011年   1673篇
  2010年   1055篇
  2009年   903篇
  2008年   1323篇
  2007年   1317篇
  2006年   1179篇
  2005年   1120篇
  2004年   1005篇
  2003年   949篇
  2002年   947篇
  2001年   302篇
  2000年   276篇
  1999年   288篇
  1998年   232篇
  1997年   175篇
  1996年   151篇
  1995年   142篇
  1994年   147篇
  1993年   158篇
  1992年   195篇
  1991年   185篇
  1990年   173篇
  1989年   142篇
  1988年   153篇
  1987年   130篇
  1986年   119篇
  1985年   128篇
  1984年   148篇
  1983年   101篇
  1982年   122篇
  1981年   106篇
  1980年   84篇
  1979年   114篇
  1978年   91篇
  1977年   81篇
  1976年   97篇
  1975年   115篇
  1973年   80篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Potassium depletion decreases blood pressure in vivo and blunts the pressor response to angiotensin II (ang II) without down-regulating the receptor. In cultured rat aortic smooth muscle cells, the ang II-induced signaling sequence is biphasic with rapid hydrolysis of the polyphosphoinositides producing an early (15 s) diacylglycerol (DG) peak and a transient rise in inositol trisphosphate (IP3) and more delayed phosphatidylinositol (PI) hydrolysis resulting in sustained DG formation (peak at 5 min). Exposure of intact vascular smooth muscle cells to low potassium growth medium for 24 h or acutely potassium-depleting cells with nigericin causes selective, marked inhibition of late DG formation (5-min peak inhibited by 60 +/- 8% and 84 +/- 7%, respectively). The early cell response, namely polyphosphoinositide hydrolysis, inositol bis- and trisphosphate production and the 15-s DG peak, is not affected. Analysis of 125I-ang II-binding data reveals no significant differences in either receptor number or binding affinity (Kd) in potassium-depleted cells. Together with its marked inhibitory effect on sustained ang II-induced DG formation, acute potassium depletion effectively blocks internalization of 125I-ang II: there is no significant internalization of the ligand after 5 min at 37 degrees C versus 64 +/- 7% internalization in control cells. Thus, potassium depletion does not alter ang II binding or initial membrane signaling in rat aortic smooth muscle but blocks ligand internalization and selectively and markedly inhibits the development of direct PI hydrolysis and sustained diacylglycerol formation. These findings suggest a role for ligand-receptor processing in generating the sustained cell response and potentially explain the lower blood pressure and decreased pressor response to ang II seen in hypokalemic states in vivo. Furthermore, the ability of K+ depletion to alter secondary signal generation may provide insight into the mechanisms underlying the K+ dependence of a variety of cell functions.  相似文献   
2.
3.
4.
5.
6.
Red blood cell (RBC) adhesion to vessel wall endothelium is a potent catalyst of vascular occlusion and occurs in oxidative stress states such as hemoglobinopathies and cardiovascular conditions. These are often treated with vitamin E (VitE), a “classic” antioxidant. In this study, we examined the effects of VitE on RBC adhesion to vascular endothelial cells (EC), and on translocation of phosphatidylserine (PS) to RBC surface, known as a potent mediator of RBC/EC adhesion, facilitating thrombus formation. Treatment of RBC with VitE strongly induces (up to sevenfold) PS externalization and enhances (up to 20-fold) their adherence to EC. The VitE hydrophilic analogue—Trolox—does not incorporate into cell membranes. Trolox did not exhibit any of these effects, implying that the VitE effect is due to its known ability to incorporate into cell membranes. The membrane-incorporated VitE significantly reduced the level of reactive oxygen species in H2O2-treated RBC, demonstrating that VitE elevates RBC/EC adhesion despite acting as an anti-oxidant. This study demonstrates for the first time that contrary to the common view of VitE as a beneficial supplement, VitE may introduce a circulatory risk by inducing flow-disturbing RBC adherence to blood vessel wall and the pro-thrombotic PS exposure.  相似文献   
7.
8.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
9.
10.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号