首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   11篇
  2023年   3篇
  2021年   6篇
  2020年   11篇
  2019年   2篇
  2018年   7篇
  2017年   10篇
  2016年   7篇
  2015年   20篇
  2014年   21篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   13篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.  相似文献   
2.
3.
4.
Puerto Rico and the surrounding islands rest on the eastern fringe of the Caribbean's Greater Antilles, located less than 100 miles northwest of the Lesser Antilles. Puerto Ricans are genetic descendants of pre‐Columbian peoples, as well as peoples of European and African descent through 500 years of migration to the island. To infer these patterns of pre‐Columbian and historic peopling of the Caribbean, we characterized genetic diversity in 326 individuals from the southeastern region of Puerto Rico and the island municipality of Vieques. We sequenced the mitochondrial DNA (mtDNA) control region of all of the samples and the complete mitogenomes of 12 of them to infer their putative place of origin. In addition, we genotyped 121 male samples for 25 Y‐chromosome single nucleotide polymorphism and 17 STR loci. Approximately 60% of the participants had indigenous mtDNA haplotypes (mostly from haplogroups A2 and C1), while 25% had African and 15% European haplotypes. Three A2 sublineages were unique to the Greater Antilles, one of which was similar to Mesoamerican types, while C1b haplogroups showed links to South America, suggesting that people reached the island from the two distinct continental source areas. However, none of the male participants had indigenous Y‐chromosomes, with 85% of them instead being European/Mediterranean and 15% sub‐Saharan African in origin. West Eurasian Y‐chromosome short tandem repeat haplotypes were quite diverse and showed similarities to those observed in southern Europe, North Africa and the Middle East. These results attest to the distinct, yet equally complex, pasts for the male and female ancestors of modern day Puerto Ricans. Am J Phys Anthropol 155:352–368, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
5.
6.
Elevated plasma triglyceride (TG) levels are an established risk factor for type-2 diabetes (T2D). However, recent studies have hinted at the possibility that genetic risk for TG may paradoxically protect against T2D. In this study, we examined the association of genetic risk for TG with incident T2D, and the interaction of baseline TG with TG genetic risk on incident T2D in 13,247 European-Americans (EA) and 3,238 African-Americans (AA) from three prospective cohort studies. A TG genetic risk score (GRS) was calculated based on 31 validated single nucleotide polymorphisms (SNPs). We considered several baseline covariates, including body- mass index (BMI) and lipid traits. Among EA and AA, we find, as expected, that baseline levels of TG are strongly positively associated with incident T2D (p<2 x 10-10). However, the TG GRS is negatively associated with T2D (p=0.013), upon adjusting for only race, in the full dataset. Upon additionally adjusting for age, sex, BMI, high-density lipoprotein cholesterol and TG, the TG GRS is significantly and negatively associated with T2D incidence (p=7.0 x 10-8), with similar trends among both EA and AA. No single SNP appears to be driving this association. We also find a significant statistical interaction of the TG GRS with TG (pinteraction=3.3 x 10-4), whereby the association of TG with incident T2D is strongest among those with low genetic risk for TG. Further research is needed to understand the likely pleiotropic mechanisms underlying these findings, and to clarify the causal relationship between T2D and TG.  相似文献   
7.
8.
Hepatocellular carcinoma (HCC) is a major health problem worldwide and in the United States as its incidence has increased substantially within the past two decades. HCC therapy remains a challenge, primarily due to underlying liver disorders such as cirrhosis that determines treatment approach and efficacy. Activated hepatic stellate cells (A-HSCs) are the key cell types involved in hepatic fibrosis/cirrhosis. A-HSCs are important constituents of HCC tumor microenvironment (TME) and support tumor growth, chemotherapy resistance, cancer cell migration, and escaping immune surveillance. This makes A-HSCs an important therapeutic target in hepatic fibrosis/cirrhosis as well as in HCC. Although many studies have reported the role of A-HSCs in cancer generation and investigated the therapeutic potential of A-HSCs reversion in cancer arrest, not much is known about inactivated or quiescent HSCs (Q-HSCs) in cancer growth or arrest. Here we report that Q-HSCs resist cancer cell growth by inducing cytotoxicity and enhancing chemotherapy sensitivity. We observed that the conditioned media from Q-HSCs (Q-HSCCM) induces cancer cell death through a caspase-independent mechanism that involves an increase in apoptosis-inducing factor expression, nuclear localization, DNA fragmentation, and cell death. We further observed that Q-HSCCM enhanced the efficiency of doxorubicin, as measured by cell viability assay. Exosomes present in the conditioned media were not involved in the mechanism, which suggests the role of other factors (proteins, metabolites, or microRNA) secreted by the cells. Identification and characterization of these factors are important in the development of effective HCC therapy.  相似文献   
9.
Tnnt2, encoding thin‐filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2MerCreMer/+) knock‐in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock‐in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2MerCreMer/+ mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre‐LoxP technology. The Tnnt2MerCreMer/+ mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury. genesis 53:377–386, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号