首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   53篇
  2023年   2篇
  2021年   15篇
  2020年   4篇
  2019年   6篇
  2018年   16篇
  2017年   4篇
  2016年   13篇
  2015年   22篇
  2014年   35篇
  2013年   38篇
  2012年   44篇
  2011年   45篇
  2010年   17篇
  2009年   22篇
  2008年   30篇
  2007年   41篇
  2006年   23篇
  2005年   43篇
  2004年   33篇
  2003年   31篇
  2002年   31篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1972年   2篇
  1969年   7篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1962年   1篇
  1934年   1篇
  1919年   2篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
1.
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control.  相似文献   
2.
Two A strain influenza viruses, A/Hong Kong/123/77 (A/HK/123/77) (H1N1) and A/Queensland/6/72 (A/Qld/6/72) (H3N2), and the two cold-adapted reassortants which possess the surface antigens of these strains (CR35 and CR6, respectively) were tested for their ability both to induce primary cytotoxic T-cell (Tc cell) responses in mice and to sensitize mice for a second Tc cell response when challenged with a distantly related A strain virus, A/Shearwater/72 (H6N5). After intranasal inoculation, A/Qld/6/72 replicated to higher titers in the lung (1 to 2 log10 50% egg infective doses) than did A/HK/123/77 or either of the reassortants. A/Qld/6/72 induced higher Tc cell responses in the lung than did CR6, and both were more effective than either A/HK/123/77 or CR35 in this respect. When similar doses (10 or 10(3) hemagglutinin units) of each virus were injected intravenously into mice and the spleens were tested for Tc cell activity 6 days later, both A/Qld/6/72 and CR6 were ca. 100-fold better at inducing a primary Tc cell response than A/HK/123/77 or CR35. In contrast, the H1N1 and H3N2 viruses gave rather similar anti-hemagglutinin antibody titers (after intravenous injection) and delayed-type hypersensitivity reactions (after subcutaneous injection). If mice were primed with a low dose of these viruses (10(4) 50% egg infective doses intranasally), A/Qld/6/72 and CR6 were more effective than A/HK/123/77 or CR35 at sensitizing for a secondary Tc cell response when challenged with A/Shearwater/72, but if larger doses were given either intranasally (10(6) 50% egg infective doses) or intravenously (10 to 10(3) hemagglutinin units), all viruses sensitized the mice equally well, despite the fact the A/Shearwater/72 gives a poor primary Tc cell response in mice. Thus, the viral glycoprotein antigens can be important in determining the immunogenicity of the virus and, particularly, the class I antigen-restricted Tc cell response of the host.  相似文献   
3.
4.
Objective: To develop improved predictive regression equations for body fat content derived from common anthropometric measurements. Research Methods and Procedures: 117 healthy German subjects, 46 men and 71 women, 26 to 67 years of age, from two different studies were assigned to a validation and a cross‐validation group. Common anthropometric measurements and body composition by DXA were obtained. Equations using anthropometric measurements predicting body fat mass (BFM) with DXA as a reference method were developed using regression models. Results: The final best predictive sex‐specific equations combining skinfold thicknesses (SF), circumferences, and bone breadth measurements were as follows: BFMNew (kg) for men = ?40.750 + [(0.397 × waist circumference) + [6.568 × (log triceps SF + log subscapular SF + log abdominal SF)]] and BFMNew (kg) for women = ?75.231 + [(0.512 × hip circumference) + [8.889 × (log chin SF + log triceps SF + log subscapular SF)] + (1.905 × knee breadth)]. The estimates of BFM from both validation and cross‐validation had an excellent correlation, showed excellent correspondence to the DXA estimates, and showed a negligible tendency to underestimate percent body fat in subjects with higher BFM compared with equations using a two‐compartment (Durnin and Womersley) or a four‐compartment (Peterson) model as the reference method. Discussion: Combining skinfold thicknesses with circumference and/or bone breadth measures provide a more precise prediction of percent body fat in comparison with established SF equations. Our equations are recommended for use in clinical or epidemiological settings in populations with similar ethnic background.  相似文献   
5.
Surveys of genetic diversity patterns of self‐incompatible clonal polyploid plant species are still scarcer than those of diploid plant species. Therefore, I studied the phylogeographical history of Linnaea borealis subsp. borealis to shed light on the colonization history of this clonal self‐incompatible polyploid plant in Eurasia using selected regions of plastid DNA and genetic diversity patterns of 22 populations of this species employing AFLP markers. I also addressed the question of whether the genetic diversity patterns in L. borealis subsp. borealis in Eurasia are similar to those of earlier published studies of clonal self‐incompatible diploid or polyploid plants. This survey revealed that the shallow phylogeographical history (six plastid haplotypes forming one haplogroup, 100% bootstrap support) and moderate genome‐wide diversity estimated using AFLP markers (Fragpoly = 10.8–38.9%, I = 0.060–0.180, FST = 0.289) were general characteristics of L. borealis subsp. borealis in its Eurasian range. The sampling strategy, in most cases at 1–2‐m or even 3–5‐m intervals, showed that a balance between vegetative and sexual reproduction and limited pollen dispersal among compatible mates can be important for genetic diversity patterns in populations of this taxon. Despite the fact that one‐half of the investigated populations were strongly isolated, they still preserved similar levels of genetic diversity across the geographical range. I found no support for the hypothesis that a bottleneck and/or inbreeding had accompanied habitat fragmentation as factors shaping genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 64–76.  相似文献   
6.
The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.  相似文献   
7.
Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4+ and CD8+ T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205+ DC population with poly (I:C) opens perspectives for dengue vaccine development.  相似文献   
8.
Cystatin B (CSTB) is an anti-protease frequently mutated in progressive myoclonus epilepsy (EPM1), a devastating degenerative disease. This work shows that rat CSTB is an unstable protein that undergoes structural changes following the interaction with a chaperone, either prokaryotic or eukaryotic. Both the prokaryotic DnaK and eukaryotic HSP70 promote CSTB polymerization. Denaturated CSTB is polymerized by the chaperone alone. Native CSTB monomers are more stable than denatured monomers and require Cu2 + for chaperone-dependent polymerization. Cu2 + interacts with at least two conserved histidines, at positions 72 and 95 modifying the structure of native monomeric CSTB. Subsequently, CSTB becomes unstable and readily responds to the addition of DnaK or HSP70, generating polymers. This reaction depends strictly on the presence of this divalent metal ion and on the presence of one cysteine in the protein chain. The cysteine deletion mutant does not polymerize. We propose that Cu2 + modifies the redox environment of the protein, allowing the oxidation of the cysteine residue of CSTB that triggers polymerization. These polymers are sensitive to reducing agents while polymers obtained from denatured CSTB monomers are DTT resistant. We propose that the Cu2 +/HSP70 dependent polymers are physiological and functional in eukaryotic cells. Furthermore, while monomeric CSTB has anti-protease function, it seems likely that polymeric CSTB fulfils different function(s).  相似文献   
9.
10.

Background

TNF-α and IFN-γ play a role in the development of mucosal damage in celiac disease (CD). Polymorphisms of TNFA and IFNG genes, as well as of the TNFRSF1A gene, encoding the TNF-α receptor 1, might underlie different inter-individual disease susceptibility over a common HLA risk background. The aims of this study were to ascertain whether five SNPs in the TNFA promoter (-1031T>C,-857C>T,-376G>A,-308G>A,-238G>A), sequence variants of the TNFRSF1A gene and IFNG +874A>T polymorphism are associated with CD in a HLA independent manner.

Methods

511 children (244 CD, 267 controls) were genotyped for HLA, TNFA and INFG (Real Time PCR). TNFRSF1A variants were studied (DHPLC and sequence).

Results

Only the rare TNFA-1031C (OR=0.65, 95% CI:0.44-0.95), -857T (OR=0.42, 95% CI:0.27-0.65), -376A (OR=2.25, 95% CI:1.12-4.51) and -308A (OR=4.76, 95% CI:3.12-7.26) alleles were significantly associated with CD. One TNFRSF1A variant was identified (c.625+10A>G, rs1800693), but not associated with CD. The CD-correlated TNFA SNPs resulted in six haplotypes. Two haplotypes were control-associated (CCGG and TTGG) and three were CD-associated (CCAG, TCGA and CCGA). The seventeen inferred haplotype combinations were grouped (A to E) based on their frequencies among CD. Binary logistic regression analysis documented a strong association between CD and HLA (OR for intermediate risk haplotypes=178; 95% CI:24-1317; OR for high risk haplotypes=2752; 95% CI:287-26387), but also an HLA-independent correlation between CD and TNFA haplotype combination groups. The CD risk for patients carrying an intermediate risk HLA haplotype could be sub-stratified by TNFA haplotype combinations.

Conclusion

TNFA promoter haplotypes associate with CD independently from HLA. We suggest that their evaluation might enhance the accuracy in estimating the CD genetic risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号