首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   14篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   10篇
  2015年   9篇
  2014年   22篇
  2013年   37篇
  2012年   15篇
  2011年   33篇
  2010年   12篇
  2009年   14篇
  2008年   22篇
  2007年   13篇
  2006年   12篇
  2005年   15篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有291条查询结果,搜索用时 156 毫秒
1.
Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostrate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17±0.01 µg/lit to 0.57±0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.  相似文献   
2.
Purple bacteria have peripheral light-harvesting (PLH) complexes adapted to high-light (LH2) and low-light (LH3, LH4) growth conditions. The latter two have only been fully characterised in Rhodopseudomonas acidophila 7050 and Rhodopseudomonas palustris CGA009, respectively. It is known that LH4 complexes are expressed under the control of two light sensing bacteriophytochromes (BphPs). Recent genomic sequencing of a number of Rps. palustris strains has provided extensive information on PLH genes. We show that both LH3 and LH4 complexes are present in Rps. palustris and have evolved in the same operon controlled by the two adjacent BphPs. Two rare marker genes indicate that a gene cluster CL2, containing LH2 genes and the BphP RpBphP4, was internally transferred within the genome to form a new operon CL1. In CL1, RpBphP4 underwent gene duplication to RpBphP2 and RpBphP3, which evolved to sense light intensity rather than spectral red/far-red intensity ratio. We show that a second LH2 complex was acquired in CL1 belonging to a different PLH clade and these two PLH complexes co-evolved together into LH3 or LH4 complexes. The near-infrared spectra provide additional support for our conclusions on the evolution of PLH complexes based on genomic data.  相似文献   
3.
We report here a simple and rapid method for the purification of chloroplast DNA (ctDNA) from wheat (Triticum aestivum). It utilizes an aqueous procedure, which does not involve at any stage running of gradients. Due to use of DEPC which inactivates DNases activated by EDTA, the DNase action on crude chloroplast preparation containing ctDNA is avoided.  相似文献   
4.
There is a critical need to evaluate lithium–sulfur (Li–S) batteries with practically relevant high sulfur loadings and minimal electrolyte. Under such conditions, the concentration of soluble polysulfide intermediates in the electrolyte drastically increases, which can alter the fundamental nature of the solution‐mediated discharge and thereby the total sulfur utilization. In this work, an investigation into various high donor number (DN) electrolytes that allow for increased polysulfide dissolution is presented, and the way in which this property may in fact be necessary for increasing sulfur utilization at low electrolyte and high loading conditions is demonstrated. The solvents dimethylacetamide, dimethyl sulfoxide, and 1‐methylimidazole are holistically evaluated against dimethoxyethane as electrolyte co‐solvents in Li–S cells, and they are used to investigate chemical and electrochemical properties of polysulfide species at both dilute and practically relevant conditions. The nature of speciation exhibited by lithium polysulfides is found to vary significantly between these concentrations, particularly with regard to the S3?? species. Furthermore, the extent of the instability in conventional electrolyte solvents and high DN solvents with both lithium metal and polysulfides is thoroughly investigated. These studies establish a basis for future efforts into rationally designing an optimal electrolyte for a lean electrolyte, high energy density Li–S battery.  相似文献   
5.
Serotonin (5‐hydroxytryptamine, 5‐HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs‐induced OL and myelin abnormalities, we investigated the effect of 5‐HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5‐HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca2+ measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron‐OL myelination cultures. For pure OL cultures, our results showed that 5‐HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development‐dependent cell death, as immature OLs exhibited increasing susceptibility to 5‐HT treatment compared to OL progenitor cells (OPC). We showed further that 5‐HT‐induced immature OL death was mediated at least partially via 5‐HT2A receptor, since cell death could be mimicked by 5‐HT2A receptor agonist 1‐(2,5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride, (±)‐2,5‐dimethoxy‐4‐iodoamphetamine hydrochloride, but atten‐uated by pre‐treatment with 5‐HT2A receptor antagonist ritanserin. Utilizing a neuron‐OL myelination co‐culture model, our data showed that 5‐HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5‐HT exposure did not lead to OL death or reduced OL density in neuron‐OL co‐cultures. However, abnormal patterns of contactin‐associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5‐HT exposure may affect other axon‐derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs‐treated animals.

  相似文献   

6.
7.
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.  相似文献   
8.
The physiological function of apolipoprotein E (apoE) includes transport and metabolism of lipids and its C-terminal domain harbors high affinity lipid-binding sites. Although the binding of apoE with non-oxidized phospholipid containing membranes has been characterized earlier, the interaction of apoE or its fragments with oxidized phospholipid containing membrane has never been studied. In this study we have compared the interaction of amphipathic helical peptide sequences derived from the C-terminal domain of apoE with membrane vesicles containing oxidized phospholipid, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), with membrane vesicles without PazePC. The interaction was studied by monitoring (a) fluorescence emission maxima of the peptides, (b) acrylamide quenching of the peptides tryptophan residues and (c) by measuring the equilibrium binding constants by resonance energy transfer (RET) analysis. Our result shows that peptide sequence 202-223, 245-266 and 268-289 of apoE has higher affinity towards membrane containing PazePC, compared to membrane without PazePC. Presence of 1mM divalent cation or 50 mM NaCl in the buffer decreased the binding of peptides to PazePC containing membrane vesicles suggesting possible involvement of the electrostatic interaction in the binding. These observations suggest that the preferential binding of apoE to oxidized phospholipid containing membrane may play a role in the anti-oxidative properties of apoE.  相似文献   
9.
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic subunit of CT (CTA1) then crosses the ER membrane and enters the cytosol in a process that involves the quality control mechanism of ER-associated degradation. The molecular details of this dislocation event have not been fully characterized. Here, we report that thermal instability in the CTA1 subunit—specifically, the loss of CTA1 tertiary structure at 37 °C—triggers toxin dislocation. Biophysical studies found that glycerol preferentially stabilized the tertiary structure of CTA1 without having any noticeable effect on the thermal stability of its secondary structure. The thermal disordering of CTA1 tertiary structure normally preceded the perturbation of its secondary structure, but in the presence of 10% glycerol the temperature-induced loss of CTA1 tertiary structure occurred at higher temperatures in tandem with the loss of CTA1 secondary structure. The glycerol-induced stabilization of CTA1 tertiary structure blocked CTA1 dislocation from the ER and instead promoted CTA1 secretion into the extracellular medium. This, in turn, inhibited CT intoxication. Glycerol treatment also inhibited the in vitro degradation of CTA1 by the core 20S proteasome. Collectively, these findings indicate that toxin thermal instability plays a key role in the intoxication process. They also suggest the stabilization of CTA1 tertiary structure is a potential goal for novel antitoxin therapeutic agents.  相似文献   
10.
Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号