首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   42篇
  2023年   3篇
  2022年   4篇
  2021年   18篇
  2020年   14篇
  2019年   5篇
  2018年   12篇
  2017年   13篇
  2016年   14篇
  2015年   22篇
  2014年   25篇
  2013年   46篇
  2012年   31篇
  2011年   27篇
  2010年   16篇
  2009年   30篇
  2008年   26篇
  2007年   28篇
  2006年   26篇
  2005年   23篇
  2004年   22篇
  2003年   14篇
  2002年   13篇
  2001年   18篇
  2000年   15篇
  1999年   7篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   8篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有569条查询结果,搜索用时 31 毫秒
1.
A 50-day feeding trial was conducted to evaluate the effects of dietary supplementation of a novel marine psychrotrophic bacterium, Psychrobacter maritimus  相似文献   
2.
The resonance Raman spectrum of photolyzed bacteriorhodopsin under conditions known to increase the concentration of the bO640 intermediate in both H2O and D2O is presented. By use of computer subtraction techniques and a knowledge of the Raman spectra of the unphotolyzed bacteriorhodopsin as well as the other intermediates in the cycle, a qualitative spectrum of bO640 is determined. The shift of a band at 1630 cm-1 in H2O to 1616 cm-1 in D2O suggests that the Schiff base of bO640 is protonated. Additional bands at 947, 965, and 992 cm-1 that appear only in D2O suspensions confirm that a proton is coupled to the retinal chromophore of bO640. The reprotonation of the Schiff base thus occurs during the bM412 to bO640 step. The fingerprint region, sensitive to the isomeric configuration of the retinal chromophore of bO640, is dissimilar to the fingerprint regions of published model compounds and other forms of bacteriorhodopsin.  相似文献   
3.

Pearl millet downy mildew (DM) incidence, severity and yield losses of two pearl millet varieties (local and improved) due to the disease were determined in the field. Significant differences in the disease incidence and severity were recorded in the plots sown with metalaxyl-treated seeds and those sown with non-treated seeds, indicating the efficacy of the fungicide on the fungus. Yield losses due to non-treatment of seeds with metalaxyl was 40.88 and 45.39% in a local variety and 43.00 and 18.60% in an improved variety in the 2000 and 2001 cropping seasons respectively. Significant differences between plots sown with metalaxyl-treated and those sown with non-treated seeds were obtained for other yield components such as 1000-grains weight, panicle length and weight.  相似文献   
4.
L-Amino acid oxidase (L-AAO) was purified from the solid state-grown cultures of A. oryzae ASH (JX006239.1) by fractional salting out, followed by ion exchange and gel filtration chromatography, to its molecular homogeneity, displaying 3.38-fold purification in comparison with the crude enzyme. SDS-PAGE revealed the enzyme to be a homo-dimer with ~55-kDa subunits, with approximate molecular weight on native PAGE of 105–110 kDa. Two absorption maxima, at 280 nm and 341 nm, for the apoproteinic and FMN prosthetic group of the enzyme, respectively, were observed, with no detected surface glycosyl residues. The enzyme had maximum activity at pH 7.8–8.0, with ionic structural stability within pH range 7.2–7.6 and pH precipitation point (pI) 4.1–5.0. L-AAO exhibited the highest activity at 55°C, with plausible thermal stability below 40°C. The enzyme had T 1/2 values of 21.2, 8.3, 3.6, 3.1, 2.6 h at 30, 35, 40, 50, 60°C with Tm 61.3°C. Kinetically, A. oryzae L-AAO displayed a broad oxidative activity for tested amino acids as substrates. However, the enzyme had a higher affinity towards basic amino acid L-lysine (K m 3.3 mM, K cat 0.04 s?1) followed by aromatic amino acids L-tyrosine (K m 5.3 mM, K cat 0.036 s?1) and L-phenylalanine (K m 6.6 mM), with 1ow affinity for the S-amino acid L-methionine (K m 15.6 mM). The higher specificity of A. oryzae L-AAO to L-lysine as substrate seems to be a unique property comparing to this enzyme from other microbes. The enzyme was significantly inhibited by hydroxylamine and SDS, with slight inhibition by EDTA. The enzyme had a little effect on AST and ALT, with no effect on platelet aggregation and blood hemolysis in vivo with an obvious cytotoxic effect towards HepG2 (IC50 832.2 μg/mL) and MCF-7 (IC50, 370.6 μg/mL) tumor cells in vitro.  相似文献   
5.
6.
7.
8.
Reaction of pyridin-2(1H)-one 1 with 4-bromobutylacetate (2), (2-acetoxyethoxy)methyl bromide (3) gave the corresponding nicotinonitrile O-acyclonucleosides, 4 and 5, respectively. Deacetylation of 4 and 5 gave the corresponding deprotected acyclonucleosides 6 and 7, respectively. Treatment of pyridin-2(1H)-one 1 with 1,3-dichloropropan-2-ol (8), epichlorohydrin (10) and allyl bromide (12) gave the corresponding nicotinonitrile O-acyclonucleosides 9, 11, and 13, respectively. Furthermore, reaction of pyridin-2(1H)-one 1 with the propargyl bromide (14) gave the corresponding 2-O-propargyl derivative 15, which was reacted via [3+2] cycloaddition with 4-azidobutyl acetate (16) and [(2-acetoxyethoxy)methyl]azide (17) to give the corresponding 1,2,3-triazole derivatives 18 and 19, respectively. The structures of the new synthesized compounds were characterized by using IR, 1H, 13C NMR spectra, and microanalysis. Selected members of these compounds were screened for antibacterial activity.  相似文献   
9.
10.
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regualted chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号