首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862853篇
  免费   83011篇
  国内免费   155篇
  2018年   9929篇
  2017年   9431篇
  2016年   13053篇
  2015年   16565篇
  2014年   19329篇
  2013年   27569篇
  2012年   31110篇
  2011年   31477篇
  2010年   21360篇
  2009年   19510篇
  2008年   27637篇
  2007年   28440篇
  2006年   26575篇
  2005年   25254篇
  2004年   24985篇
  2003年   23865篇
  2002年   23106篇
  2001年   35911篇
  2000年   35353篇
  1999年   28285篇
  1998年   10418篇
  1997年   10345篇
  1996年   9924篇
  1995年   9482篇
  1994年   9071篇
  1993年   9094篇
  1992年   22871篇
  1991年   22401篇
  1990年   21808篇
  1989年   21243篇
  1988年   19497篇
  1987年   18719篇
  1986年   17456篇
  1985年   17307篇
  1984年   14316篇
  1983年   12451篇
  1982年   9503篇
  1981年   8564篇
  1980年   7955篇
  1979年   13207篇
  1978年   10440篇
  1977年   9384篇
  1976年   8963篇
  1975年   10040篇
  1974年   10753篇
  1973年   10601篇
  1972年   9678篇
  1971年   8647篇
  1970年   7583篇
  1969年   7447篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   
2.
Richard A. Gill 《Plant and Soil》2014,374(1-2):197-210

Background and aims

Drivers of ecosystem dynamics that are under human influence range from local, land-management decisions to global processes such as warming temperatures and N deposition. The goal of this study was to understand how multiple, potentially interacting factors influence net primary production, N mineralization, and water and soil CO2 fluxes.

Methods

Here I report on a three-year experiment that manipulated air temperature using ITEX passive warming cones and N deposition in a mountain meadow ecosystems that were historically grazed or protected from grazing.

Results

The strongest and most consistent effect was due to the legacy of grazing, with previously grazed sites having lower primary production, lower soil respiration rates, lower soil moisture, and lower soil C and N stocks than historically ungrazed sites. Warming increased soil respiration, but the effect was transient, and decreased over the 3-year study. Nitrogen addition increased primary production in the second and third year of the experiment but had no significant effect on soil respiration. The effect of historical grazing on primary production was approximately double the effect of N addition. Temperature and N deposition rarely interacted except for increasing N availability during the warm, wet growing season of 2004.

Conclusions

These findings indicate that the legacies of land use, with their influence on plant community composition and hydrologic processes, are locally more important than short-term step changes in temperature and nutrient availability.  相似文献   
3.

Aims

This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu.

Methods

The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed.

Results

At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil.

Conclusions

The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.  相似文献   
4.
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology.Plant surfaces have an important protecting function against multiple biotic and abiotic stress factors (Riederer, 2006). They may, for example, limit the attack of insects (Eigenbrode and Jetter, 2002) or pathogenic fungi (Gniwotta et al., 2005; Łaźniewska et al., 2012), avoid damage caused by high intensities of UV and visible radiation (Reicosky and Hanover, 1978; Karabourniotis and Bormann, 1999), help to regulate leaf temperature (Ehleringer and Björkman, 1978; Ripley et al., 1999), and chiefly prevent plant organs from dehydration (Riederer and Schreiber, 2001).The epidermis of plants has been found to have a major degree of physical and chemical variability and may often contain specialized cells such as trichomes or stomata (Roth-Nebelsick et al., 2009; Javelle et al., 2011). Most aerial organs are covered with an extracellular and generally lipid-rich layer named the cuticle, which is typically composed of waxes embedded in (intracuticular waxes) or deposited on (epicuticular waxes) a biopolymer matrix of cutin, forming a network of cross-esterified hydroxy C16 and/or C18 fatty acids, and/or cutan, with variable amounts of polysaccharides and phenolics (Domínguez et al., 2011; Yeats and Rose, 2013). Different nano- and/or microscale levels of plant surface sculpturing have been observed by scanning electron microscopy (SEM), generally in relation to the topography of epicuticular waxes, cuticular folds, and epidermal cells (Koch and Barthlott, 2009). Such surface features together with their chemical composition (Khayet and Fernández, 2012) may lead to a high degree of roughness and hydrophobicity (Koch and Barthlott, 2009; Konrad et al., 2012). The interactions of plant surfaces with water have been addressed in some investigations (Brewer et al., 1991; Brewer and Smith, 1997; Pandey and Nagar, 2003; Hanba et al., 2004; Dietz et al., 2007; Holder, 2007a, 2007b; Fernández et al., 2011, 2014; Roth-Nebelsick et al., 2012; Wen et al., 2012; Urrego-Pereira et al., 2013) and are a topic of growing interest for plant ecophysiology (Helliker and Griffiths, 2007; Aryal and Neuner, 2010; Limm and Dawson, 2010; Kim and Lee, 2011; Berry and Smith, 2012; Berry et al., 2013; Rosado and Holder, 2013; Helliker, 2014). On the other hand, the mechanisms of foliar uptake of water and solutes by plant surfaces are still not fully understood (Fernández and Eichert, 2009; Burkhardt and Hunsche, 2013), but they may play an important ecophysiological role (Limm et al., 2009; Johnstone and Dawson, 2010; Adamec, 2013; Berry et al., 2014).The importance of trichomes and pubescent layers on water drop-plant surface interactions and on the subsequent potential water uptake into the organs has been analyzed in some investigations (Fahn, 1986; Brewer et al., 1991; Grammatikopoulos and Manetas, 1994; Brewer and Smith, 1997; Pierce et al., 2001; Kenzo et al., 2008; Fernández et al., 2011, 2014; Burrows et al., 2013). Trichomes are unicellular or multicellular and glandular or nonglandular appendages, which originate from epidermal cells only and develop outwards on the surface of plant organs (Werker, 2000). Nonglandular trichomes are categorized according to their morphology and exhibit a major variability in size, morphology, and function. On the other hand, glandular trichomes are classified by the secretory materials they excrete, accumulate, or absorb (Johnson, 1975; Werker, 2000; Wagner et al., 2004). Trichomes can be often found in xeromorphic leaves and in young organs (Fahn, 1986; Karabourniotis et al., 1995). The occurrence of protecting leaf trichomes has been also reported for Mediterranean species such as holm oak (Quercus ilex; Karabourniotis et al., 1995, 1998; Morales et al., 2002; Karioti et al., 2011; Camarero et al., 2012). There is limited information about the nature of the surface of trichomes, but they are also covered with a cuticle similarly to other epidermal cell types (Fernández et al., 2011, 2014).In this study and using holm oak as a model, we assessed, for the first time, the leaf surface-water relations of the abaxial (always pubescent) versus the adaxial (only pubescent in developing leaves and for a few months) surface, including their capacity to absorb surface-deposited water drops. Based on membrane science methodologies (Fernández et al., 2011; Khayet and Fernández, 2012) and following a new integrative approach, the chemical, physical, and anatomical properties of holm oak leaf surfaces and trichomes were analyzed, with the aim of addressing the following questions. Are young and mature adaxial and abaxial leaf surfaces capable of absorbing water deposited as drops on to the surfaces? Are young and mature abaxial and adaxial leaf surfaces similar in relation to their wettability, hydrophobicity, polarity, work of adhesion (Wa) for water, solubility parameter (δ), and surface free energy (γ)? What is the physical and chemical nature of the adaxial versus the abaxial trichomes, chiefly in relation to young leaves?  相似文献   
5.
Opium poppy (Papaver somniferum) is one of the world’s oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.  相似文献   
6.
New data have been acquired on the biology, morphological features and distribution of Norwegian (Atlantic) pollock Theragra finnmarchica in the Barents Sea. Two individuals of this rare species gadoid (Gadidae) were caught in June and July 2012 in the south-eastern part of the Barents Sea, indicating a wider distribution area of this species than previously thought. It has been confirmed that a number of morphological features of Norwegian pollock is different from T. chalcogramma, and that it feeds on macroplankton (Euphausiidae, Hyperiidae).  相似文献   
7.
There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.  相似文献   
8.
Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.  相似文献   
9.
Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.  相似文献   
10.
Autophagy, the process by which proteins or organelles are engulfed by autophagosomes and delivered for vacuolar/lysosomal degradation, is induced to ensure survival under starvation and other stresses. A selective autophagic pathway for 60S ribosomal subunits elicited by nitrogen starvation in yeast—ribophagy—was recently described and requires the Ubp3-Bre5 deubiquitylating enzyme. This discovery implied that an E3 ligases act upstream, whether inhibiting the process or providing an initial required signal. In this paper, we show that Ltn1/Rkr1, a 60S ribosome-associated E3 implicated in translational surveillance, acts as an inhibitor of 60S ribosomal subunit ribophagy and is antagonized by Ubp3. The ribosomal protein Rpl25 is a relevant target. Its ubiquitylation is Ltn1 dependent and Ubp3 reversed, and mutation of its ubiquitylation site rendered ribophagy less dependent on Ubp3. Consistently, the expression of Ltn1—but not Ubp3—rapidly decreased after starvation, presumably to allow ribophagy to proceed. Thus, Ltn1 and Ubp3-Bre5 likely contribute to adapt ribophagy activity to both nutrient supply and protein translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号