首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   2篇
  收费全文   1篇
  完全免费   23篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   4篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 62 毫秒
1.
青藏高原高寒草甸生态系统净二氧化碳交换量特征   总被引:34,自引:3,他引:31       下载免费PDF全文
高寒草甸是青藏高原广泛分布的植被类型之一,面积约120万km2,地处青藏高原腹地的当雄草原站即位于该类植被的典型分布区。以2003年8~10月中旬在该站用涡度相关法连续观测的CO2通量数据资料为基础,分析了高寒草甸生态系统8~10月份净二氧化碳交换量(NEE)的日变化规律,及其与光合有效辐射、降水、温度等环境因子之间的关系。结果表明,8~10月份的日均NEE有明显的日变化,表现为单峰型,通常在地方时11:00~12:00左右达到碳吸收的最大值,平均为-0.2680mgCO2/(m2·s)(-6.0800μmolCO2/(m2·s))。白天的NEE与光合有效辐射之间符合很好的直角双曲线关系,表观量子产额平均为0.0203μmolCO2/μmolPAR,表观最大光合速率平均为9.7411μmolCO2/(m2·s)。夜晚的NEE与5cm地温有很好的指数函数关系。  相似文献
2.
西藏高原田间冬小麦的表观光合量子效率   总被引:20,自引:1,他引:19       下载免费PDF全文
在西藏高原田间的测定表明,高原冬小麦光-光合速率响应曲线符合直角双曲线函数,其表观初始光能利用效率α平均为0.034μmolCO2/m^2s(μmol photons/m^2s),只有内陆平原地区的约2/3。高原地区空气稀薄,CO2密度为平原地区的2/3左右,致使小麦叶片光能利用效率降低。  相似文献
3.
西藏高原田间冬小麦旗叶光合作用研究   总被引:9,自引:0,他引:9       下载免费PDF全文
 西藏高原冬小麦旗叶光合速率日变化曲线为平坦或单峰型,没有明显“午睡”现象。净光合速率日最高值可与平原接近。光合日总量最高值出现在灌浆中期,其值比平原低4%~34%。净光合速率达20μmolCO2·m-2·s-1以上的环境因子组合是光合有效辐射光量子通量密度2000μmol·m-2·s-1以上,气温25~29℃,近地层大气CO2密度0.41mg·dm-3以上,0cm地温18~23℃、5cm地温15~19℃。这样的因子组合在高原同时满足的机率不高,由于CO2浓度与光温因子高值出现时间不同步,更由于CO2密度比内陆平原低1/3,严重制约了光合日总量值,高原冬小麦旗叶光合作用的特点是净光合速率日最高值可与平原接近,但光合日总量却明显低于平原。  相似文献
4.
羌塘高原高寒草地生态系统生产力动态   总被引:6,自引:0,他引:6       下载免费PDF全文
基于实测气象数据和遥感数据,分析了藏北地区气候变化趋势,并采用植被 气候综合模型和CASA模型模拟分析了藏北草地潜在和现实净第一性生产力(NPP)的动态变化和空间格局.结果表明:1955—2004年间,羌塘高原年平均气温上升了1.37 ℃,降水量增加了63 mm,中、东部区域的气候趋于暖湿化,西部区域趋于暖干化,目前气候变化尚未引起草地退化.草地潜在NPP平均值为东部 > 中部 > 西部.1982—2004年,由于水热条件的变化,中部区域的潜在NPP增加值最高,达0.55 t·hm-2·a1,东部和西部分别为0.51和0.21 t·hm-2·a-1;东、中、西部现实NPP增量分别为-0.19、-0.03 和0.20 t·hm-2·a-1.超载过牧是东、中部草地退化的主要原因,中部是草地保护恢复工程的最佳实施区域.  相似文献
5.
拉萨河谷杨树人工林细根的生产力及其周转   总被引:6,自引:0,他引:6       下载免费PDF全文
通过土钻取样和分解袋法对拉萨河谷杨树人工林细根的生长和周转进行了测定.结果表明,在该地区杨树人工林生态系统中,约80%的细根集中分布在0~30cm土壤表层中;接近树木一侧的活(死)细根生物量均高于外侧,但二者未达到显著的差异;在生长季期间,活细根生物量平均为2.576 t · hm-2,死细根生物量平均为1.566 t · hm-2,生长高峰出现在生长季初期.经估算,拉萨河谷杨树人工林细根年生长量为3.030 t · hm-2,年周转率为1.18次;但受高原低温的影响,细根分解缓慢,分解系数k平均为0.0007~0.0008.细根的这种生长特征是杨树对高原地区短暂生长季节和雨热同季气候条件的一种适应性表现.  相似文献
6.
不同降水梯度下草地生态系统地表能量交换   总被引:4,自引:2,他引:2       下载免费PDF全文
通过对不同降水梯度下的蒙古中部针茅草原(KBU)、内蒙古羊草草原(NM)、海北高寒灌丛草甸(HB)和当雄高寒草甸草原(DX)4个草地生态系统的能量通量连续4-5a的测定,分析了影响青藏高原和蒙古高原草地生态系统生长季中地表能量交换的主要因素。研究表明:相对于KBU、NM和DX,HB高寒灌丛草甸NDVI(0.58)和土壤含水量(28.3%)最大,因而地表短波反射率(αk)最低(0.12),从而获得了最大的净辐射(Rn)。KBU、NM和DX 3个草地生态系统生长季中αk随着植被的生长而降低,在生长季末期,随着植被的凋落而增加;HB的αk季节变化趋势与其它生态系统相反。从蒙古高原(KBU和NM)到青藏高原(HB和DX),随着降水量的增加,波文比(β)逐渐减小(2.25-0.53),即生态系统与大气的能量交换从显热(H)占主导转变为潜热(LE)占主导。植被状况对草地生态系统与大气之间能量交换的季节动态有重要的调控作用,在NDVI较低的时候,4个生态系统H/Rn都大于LE/Rn,LE/Rn随着NDVI的增加而增加,而H/Rn呈现出与LE/Rn相反的季节变化趋势。  相似文献
7.
青藏高原高寒草原生态系统土壤碳氮比的分布特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用67个样点数据,研究了青藏高原高寒草原生态系统土壤碳氮比的分布特征.结果表明:(1)在水平方向上,土壤碳氮比呈现出西北高、东南低的总体态势和斑块状交错分布的格局,碳氮比的高值区主要集中在藏北高原腹地和喜马拉雅山北麓湖盆区,不同草地型和不同自然地带土壤碳氮比差异显著;(2)土壤剖面自上而下,不同草地型碳氮比可分为低-高-低型、由高到低型、由低到高型、高-低-高-低型和高-低-高型等5个类型.表土层(0-20 cm)与底土层(30-40 cm)土壤碳氮比差异显著;(3)土壤碳氮比与与最冷月均气温、年均蒸发量、年均相对湿度和土壤全氮含量呈极显著正相关关系,而与年均日照时数、年均气温、速效钾含量呈极显著负相关关系,这些环境因素对土壤碳氮比影响从大到小的顺序是年均相对湿度 > 年均日照时数 > 最冷月均气温 > 年均气温 > 年均蒸发量 > 土壤全氮含量 > 土壤速效钾含量.  相似文献
8.
西藏是青藏高原的核心,是我国重要的生态安全屏障。由于高、寒、旱的特点,西藏高寒生态系统极为脆弱,在自然和人为因素影响下极易发生退化,治理难度大。草地退化和土地沙化治理一直是西藏生态安全屏障保护与建设的重中之重。为此,国家在"典型脆弱生态修复与保护研究"重点专项里启动了"西藏退化高寒生态系统恢复与重建技术及示范(2016YFC0502000)"项目,旨在研究生态系统演变规律和影响机理的基础上,针对西藏高原不同的退化区域,重点研发高寒退化草地恢复、沙化土地治理、生态产业及生态畜牧业发展等技术与模式,开展县域水平的集成示范,实现高寒生态系统功能的提升与适应性优化管理的目标,为西藏生态安全屏障保护与建设提供技术支撑。  相似文献
9.
降水变化是造成青藏高原草地植被生长年际变异的重要因素,降水量、分配方式及发生时间是降水变化的重要特征.利用2000—2015年青藏高原及附近区域145个气象站点的降水资料,以年降水量表征降水整体状况,以改进的降水集度(PCI)表征年内降水的分配状况,以定义的降水重心(PC)表征降水的集中时期,分析青藏高原降水变化的时空特征;并进一步以归一化植被指数最大值(NDVImax)表征植被生长状况,探讨了青藏高原草地对降水年际变化的响应.结果表明: 青藏高原年降水量和PCI存在明显的梯度特征,PC在西藏南部形成中心.青藏高原灌丛草地NDVImax年际变化对PCI变化响应敏感,降水越均匀越有利于NDVImax的增加,但受到降水量的限制;高寒草甸对降水特征没有表现出显著的相关关系;草原植被NDVImax的年际变化同时受PCI和PC的控制;高寒荒漠植被NDVImax的年际变化主要受降水量的控制.在研究降水变化对青藏高原不同类型植被的影响时,除降水量之外,还需进一步考虑降水的分配格局等特征.  相似文献
10.
通过亚高山带(3700 m)、高山带(4300 m)和亚冰雪带(5000 m 以上)3 个海拔常见的双
子叶草本、禾草和莎草3 种功能型57 种草本植物单株植物性状和生物量分配模式来检验假设:
随海拔升高植物将更多的生物量分配到地下部分, 特别是地下储存器官, 以利于萌发再生和
抵御高寒环境胁迫. 结果基本验证了这一假设, 但不同器官分配存在一定差异. 随着海拔升
高地上生物量呈减少的趋势, 亚高山带植物分配给储存器官的生物量比例((7±2)%)显著低于
高山带((23±6)%)和亚冰雪带((21±6)%), 而分配给叶的生物量比例随海拔升高变化不大. 从亚
高山带到亚冰雪带, 茎、花的生物量分别下降45%和41%, 细根的生物量却升高86%和102%.
随着海拔的升高, 双子叶草本、禾草比叶面积、单株叶面积均减小, 莎草则呈现相反趋势, 3
种功能型植物叶面积比、叶根比随海拔升高降低而细根生物量增加. 高山植物生物量分配随
海拔的变化主要表现在地上繁殖器官的降低和地下细根增加, 而叶生物量分配比例比较稳定,
表明高山植物通过稳定光合器官的投入和增加细根的吸收表面积, 以补偿高山低温和养分限
制环境下的碳供给和养分吸收. 与双子叶草本和禾草相比, 莎草类植物在高海拔地区, 叶、根
性状和生物量分配模式对其获取资源更加有利, 细根生物量在高山带显著升高是对莎草菌根
形成能力弱的一种补偿.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号