首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3017篇
  免费   201篇
  国内免费   2篇
  2023年   8篇
  2022年   11篇
  2021年   37篇
  2020年   24篇
  2019年   27篇
  2018年   37篇
  2017年   39篇
  2016年   70篇
  2015年   104篇
  2014年   120篇
  2013年   210篇
  2012年   180篇
  2011年   194篇
  2010年   118篇
  2009年   109篇
  2008年   191篇
  2007年   194篇
  2006年   208篇
  2005年   225篇
  2004年   198篇
  2003年   176篇
  2002年   200篇
  2001年   18篇
  2000年   21篇
  1999年   31篇
  1998年   40篇
  1997年   41篇
  1996年   32篇
  1995年   27篇
  1994年   36篇
  1993年   36篇
  1992年   19篇
  1991年   22篇
  1990年   11篇
  1989年   18篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   14篇
  1984年   11篇
  1983年   12篇
  1982年   19篇
  1981年   19篇
  1980年   11篇
  1979年   12篇
  1978年   8篇
  1977年   13篇
  1976年   8篇
  1974年   5篇
  1973年   7篇
排序方式: 共有3220条查询结果,搜索用时 15 毫秒
1.
Abstract A factor showing inhibitory activity against human gingival fibrolasts was extracted from the cytosol fraction of Actinobacillus actinomycetemcomitans Y4. The activity markedly inhibited the proliferation of human gingival fibrolasts, but had no effect on cell viability or gross morphology. No such activity was found in cytosol fractions from either Porphyromonas gingivalis 381 or Escherichia coli HB101. The extract from A. actinomycetemcomitans Y4 was then purified by anion-exchange chromatography, hydroxyapatite chromatography and gel-filtration chromatography to give a single band on SDS-PAGE with an apparent molecular mass of 65 kDa. The purification ratio was 183-fold with a recovery rate of 5% compared with the crude extract (starting material) when the activity was assessed by direct cell counts.  相似文献   
2.
To determine the level of cerebral blood flow reduction which causes striatal dopamine release, extracellular dopamine and cerebral blood flow was simultaneously determined using in vivo brain dialysis and a hydrogen clearance method, respectively, in the striatum of spontaneously hypertensive rats, before and during experimental cerebral ischemia. The ischemic flow threshold for neurotransmitter dopamine release was found to be 20% of the resting value or 8–10 ml/100g/min of cerebral blood flow, being similar to those for energy and membrane failures.  相似文献   
3.
Asymmetric reduction of 2,6,6,-trimethyl-2-cyclohexene-l,4-dione (4-oxoisophrone) to (6R)-2,2,6-trimethyl-1,4-cyclohexane-dione((3R)-dihydro-4-oxoisophorone) was catalysed by immobilized thermophilic bacteria, Thermomonospora curvata JTS 321. Because of leakage of entrapped cells from gel beads during reactions using culture medium, we optimized the medium to allow the microbial conversion under conditions of controlled cell growth. Of the media screened, liver infusion medium was found to be the most suitable and microbial conversion was achieved without cell leakage from the immobilized gels. Immobilized T. curvata cells were repeatedly used for the asymmetric reduction of 4-oxoisophorone, more than 15 times, with an extent of conversion of 50%.  相似文献   
4.
We investigated the effects of interruption of the impulse flow in the habenulopeduncular pathways by local infusion of tetrodotoxin on the acetylcholine and choline content in selected dopamine rich regions in the forebrain and midbrain in rats. The tetrodotoxin infusion caused a marked increase in acetylcholine content in the medial frontal cortex, striatum and ventral tegmental area+interpeduncular nucleus, but not in the limbic area or the substantia nigra, whereas choline content was reduced only in both the striatum and ventral tegmental area+interpeduncular nucleus. There was an increase in 3,4-dihydroxyphenylacetic acid content in the striatum after the manipulation. These findings suggest that the dorsal diencephalic conduction system may be involved in the integration of the activity of cholinergic neurons in the forebrain and midbrain regions and striatal dopanine neurons may play a role in the modulation of cholinergic neurons.  相似文献   
5.
We have used an interspecific backcross between C57BL/6J and Mus spretus to derive a molecular genetic linkage map of chromosome 15 that includes 25 molecular markers and spans 93% of the estimated length of chromosome 15. Using a second interspecific backcross that was analyzed with a centromere-specific marker, we were also able to position our map with respect to the chromosome 15 centromere. This map provides molecular access to many discrete regions on chromosome 15, thus providing a framework for establishing relationships between cloned DNA markers and known mouse mutations and for identifying homologous genes in mice and humans that may be involved in disease.  相似文献   
6.
An interspecific backcross between C57BL/6J and Mus spretus was used to generate a molecular genetic linkage map of mouse chromosome 18 that includes 23 molecular markers and spans approximately 86% of the estimated length of the chromosome. The Apc, Camk2a, D18Fcr1, D18Fcr2, D18Leh1, D18Leh2, Dcc, Emb-rs3, Fgfa, Fim-2/Csfmr, Gnal, Grl-1, Grp, Hk-1rs1, Ii, Kns, Lmnb, Mbp, Mcc, Mtv-38, Palb, Pdgfrb, and Tpl-2 genes were mapped relative to each other in one interspecific backcross. A second interspecific backcross and a centromere-specific DNA satellite probe were used to determine the distance of the most proximal chromosome 18 marker to the centromere. The interspecific map extends the known regions of linkage homology between mouse chromosome 18 and human chromosomes 5 and 18 and identifies a new homology segment with human chromosome 10p. It also provides molecular access to many regions of mouse chromosome 18 for the first time.  相似文献   
7.
Summary Murine IgG1 monoclonal antibodies (mAbs), ITK-2 and ITK-3, were generated against a small-cell lung cancer (SCLC) cell line. Enzyme-linked immunosorbent assay using a variety of established cell lines as substrates, immunoperoxidase staining of freshly frozen tissue sections, and fluorescence-activated cell sorter analysis of peripheral blood leukocytes showed that these mAbs recognize a part of the SCLC-associated cluster 1 antigen. In immunoprecipitation studies, both ITK-2 and ITK-3 bound to a 145-kDa glycoprotein of SCLC cell membrane extracts, as did MOC-1 and NKH-1, which both recognize the cluster 1 antigen. However, because the binding of125I-labeled ITK-2 to SCLC cells was not inhibited by MOC-1 or NKH-1, the binding site of ITK-2 on SCLC cells appeared to be different from that of either MOC-1 or NKH-1. Unexpectedly, binding of125I-labeled ITK-2 to SCLC cells increased in the presence of ITK-3. This ITK-3-induced increase in ITK-2 binding was due partly to an increase in the number of binding sites for ITK-2 on SCLC cells. Addition of ITK-3 may, therefore, improve the effectiveness of ITK-2-based tumor detection or therapy.  相似文献   
8.
Summary A mathematical theory for computing the probabilities of various nucleotide configurations among related species is developed, and the probability of obtaining the correct tree (topology) from nucleotide sequence data is evaluated using models of evolutionary trees that are close to the tree of mitochondrial DNAs from human, chimpanzee, gorilla, orangutan, and gibbon. Special attention is given to the number of nucleotides required to resolve the branching order among the three most closely related organisms (human, chimpanzee, and gorilla). If the extent of DNA divergence is close to that obtained by Brown et al. for mitochondrial DNA and if sequence data are available only for the three most closely related organisms, the number of nucleotides (m*) required to obtain the correct tree with a probability of 95% is about 4700. If sequence data for two outgroup species (orangutan and gibbon) are available, m* becomes about 2600–2700 when the transformed distance, distance-Wagner, maximum parsimony, or compatibility method is used. In the unweighted pair-group method, m* is not affected by the availability of data from outgroup species. When these five different tree-making methods, as well as Fitch and Margoliash's method, are applied to the mitochondrial DNA data (1834 bp) obtained by Brown et al. and by Hixson and Brown, they all give the same phylogenetic tree, in which human and chimpanzee are most closely related. However, the trees considered here are gene trees, and to obtain the correct species tree, sequence data for several independent loci must be used.  相似文献   
9.
A mathematical theory is developed for computing the probability that m genes sampled from one population (species) and n genes sampled from another are derived from l genes that existed at the time of population splitting. The expected time of divergence between the two most closely related genes sampled from two different populations and the time of divergence (coalescence) of all genes sampled are studied by using this theory. It is shown that the time of divergence between the two most closely related genes can be used as an approximate estimate of the time of population splitting (T) only when T identical to t/(2N) is small, where t and N are the number of generations and the effective population size, respectively. The variance of Nei and Li's estimate (d) of the number of net nucleotide differences between two populations is also studied. It is shown that the standard error (Sd) of d is larger than the mean when T is small (T much less than 1). In this case, Sd is reduced considerably by increasing sample size. When T is large (T greater than 1), however, a large proportion of the variance of d is caused by stochastic factors, and increase in the sample size does not help to reduce Sd. To reduce the stochastic variance of d, one must use data from many independent unlinked gene loci.  相似文献   
10.
A cyprinid fish,Pseudogobio esocinus showed gradual bradycardia at oxygen saturation (%) of less than 29.7±4.6 (1.89±0.29 ml/l of oxygen concentration), surfacing at 14.7±1.3 (0.94±0.09ml/l), drastic decrease of oxygen consumption at less than 14.2±0.8 (0.91 ±0.06ml/l) and asphyxia at 9.7±1.4 (0.62±0.09ml/l). The fish avoided water having low oxygen saturation of less than 54.0± 5.4 (3.38±0.30ml/l), and markedly at less than 26.2±3.4 (1.62±0.16 ml/l).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号