首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52282篇
  免费   4509篇
  国内免费   4703篇
  2024年   85篇
  2023年   640篇
  2022年   784篇
  2021年   2826篇
  2020年   1899篇
  2019年   2396篇
  2018年   2294篇
  2017年   1653篇
  2016年   2269篇
  2015年   3328篇
  2014年   3916篇
  2013年   4190篇
  2012年   4929篇
  2011年   4421篇
  2010年   2806篇
  2009年   2361篇
  2008年   2813篇
  2007年   2490篇
  2006年   2287篇
  2005年   1908篇
  2004年   1594篇
  2003年   1465篇
  2002年   1248篇
  2001年   953篇
  2000年   827篇
  1999年   814篇
  1998年   470篇
  1997年   465篇
  1996年   417篇
  1995年   374篇
  1994年   418篇
  1993年   310篇
  1992年   361篇
  1991年   278篇
  1990年   249篇
  1989年   219篇
  1988年   156篇
  1987年   122篇
  1986年   109篇
  1985年   115篇
  1984年   72篇
  1983年   67篇
  1982年   48篇
  1981年   12篇
  1980年   9篇
  1979年   15篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 175 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
3.
We released seeds of two sympatric tree species, Corylus mandshurica (seed with thinner seed hull, higher nutrition) and C. heterophylla (seeds with thicker seed hull, lower nutrition) in the masting year of C. mandshurica in 2008, and C. heterophylla in 2009, respectively, to investigate how seed masting of the two sympatric Corylus species affects seed removal and dispersal fitness of the two species differently at both intra- and inter-specific levels. At intra-specific level, the authors found mast seeding of both C. mandshurica and C. heterophylla significantly reduced seed removal, seed consumption, but increased seed dispersal distance and seed dispersal fitness of the released seeds. Mast seeding of C. mandshurica increased seed caching of C. mandshurica. At inter-specific level, the authors found mast seeding of C. mandshurica reduced seed removal of C. heterophylla, but mast seeding of C. heterophylla did not significantly reduce seed removal of C. mandshurica. Mast seeding of C. mandshurica reduced seed consumption of C. heterophylla, while mast seeding of C. heterophylla reduced seed consumption of C. mandshurica. We found mast seeding of C. mandshurica significantly reduced seed dispersal distance of C. heterophylla, while mast seeding of C. heterophylla significantly increased seed dispersal distance of C. mandshurica. We found that mast seeding of C. mandshurica significantly increased seed dispersal fitness of C. heterophylla, while mast seeding of C. heterophylla did not significantly increase seed dispersal fitness of C. mandshurica. More studies are needed to reveal the ecological consequences of mast seeding at inter-specific or community-level. Seed traits may attribute the differences of mast seeding at inter-specific level. Because seeds with thinner seed hull and higher nutrition were more harvested and eaten by rodents, mast seeding of C. mandshurica might have reduced seed removal and seed consumption, but increased dispersal fitness of C. heterophylla (seeds with thicker seed hull, lower nutrition). Therefore, synchrony among species is, or is not, selectively beneficial to the focus species depends on seed traits which determine gains from mast seeding at inter-specific level.  相似文献   
4.
5.
6.
7.
  相似文献   
8.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
9.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号