首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3933篇
  免费   233篇
  国内免费   7篇
  2021年   24篇
  2019年   21篇
  2018年   35篇
  2017年   25篇
  2016年   33篇
  2015年   57篇
  2014年   72篇
  2013年   248篇
  2012年   151篇
  2011年   213篇
  2010年   116篇
  2009年   132篇
  2008年   212篇
  2007年   210篇
  2006年   206篇
  2005年   207篇
  2004年   233篇
  2003年   232篇
  2002年   231篇
  2001年   82篇
  2000年   65篇
  1999年   88篇
  1998年   81篇
  1997年   51篇
  1996年   54篇
  1995年   42篇
  1994年   42篇
  1993年   58篇
  1992年   72篇
  1991年   47篇
  1990年   55篇
  1989年   54篇
  1988年   38篇
  1987年   43篇
  1986年   57篇
  1985年   55篇
  1984年   39篇
  1983年   48篇
  1982年   38篇
  1981年   43篇
  1980年   42篇
  1979年   43篇
  1978年   31篇
  1977年   43篇
  1976年   36篇
  1975年   30篇
  1974年   24篇
  1973年   18篇
  1972年   11篇
  1966年   11篇
排序方式: 共有4173条查询结果,搜索用时 15 毫秒
1.
The role of the Trp6 residue in the biological activity of the hypotensive peptide xenopsin (<Glu-Gly-Lys-Arg-Pro-Trp-Ile-Leu-OH) was investigated. This residue was satisfactorily reduced to 2,3-dihydro-Trp on treatment with excess pyridine-borane in trifluoroacetic acid without any detectable change in other parts of the molecule. The analogous peptide, (Lys2, Gly3) xenopsin, was also reduced in a similar manner. Both reduction products were purified by gel filtration and characterized by UV absorption, amino acid composition, and structural analysis.The reduced peptides were assayed on the fundus strip of isolated rat stomach and were found to possess less than 1 percent of the activity of the original peptides. Although each of the reduced analogs had an indoline substituted for an indole in the tryptophyl residue, their biological activity was virtually lost. This suggests that the tryptophyl residue of xenopsin is crucial for its biological activity.  相似文献   
2.
To elucidate the role of the spiral limbus in glucose transport in the cochlea, we analyzed the expression and localization of GLUT1, connexin26, connexin30, and occludin in the spiral limbus of the rat cochlea. GLUT1 and occludin were detected in blood vessels. GLUT1, connexin26, connexin30, and occludin were also expressed in fibrocytes just basal to the supralimbal lining cells. Connexin26 and connexin30 were present among not only these GLUT1-positive fibrocytes but also GLUT1-negative fibrocytes. In vivo glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the spiral limbus, whereas EBA was localized only in the vessels. Moreover, the gap junctional uncoupler heptanol inhibited the distribution of 6-NBDG. These findings suggest that gap junctions play an important role in glucose transport in the spiral limbus, i.e., that gap junctions mediate glucose transport from GLUT1-positive fibrocytes to GLUT1-negative fibrocytes in the spiral limbus.  相似文献   
3.
4.
Two types of oligomeric derivatives of prostaglandin E1 were synthesized, a free-acid type and a lipophilic ester type. Neither compound inhibited sickling of red blood cells from sickle cell anaemia patients. However, both were found to inhibit the in vitro formation of dehydrated, dense cells (DC) caused by repeated cycles of sickling and unsickling of sickle cells. Both inhibited the formation of DC in a dose-related manner, but the ester type compound was more effective than the acid-type compound. Concentrations at which these compounds inhibit the DC formation by 50% were 5.2 microM and 40 microM for ester and free-acid compounds, respectively. A possible inhibition mechanism is discussed.  相似文献   
5.
The intracellular pathway following receptor-mediated endocytosis of cholera toxin was studied using brefeldin A (BFA), which inhibited protein secretion and induced dramatic morphological changes in the Golgi region. In both mouse Y1 adrenal cells and CHO cells, BFA at 1 μg/ml caused a 80–90% inhibition of the cholera toxin (CT)-elevation of intracellular cAMP. The inhibition of the cytotoxicity of CT by BFA was also observed in a rounding assay of Y1 adrenal cells. The inhibition of CT cytotoxicity by BFA was dose dependent, with the ID50 value similar to the LD50 of BFA in Y1 adrenal cells. Binding and internalization of [125I]-cholera toxin in Y1 adrenal cells was not affected by BFA. Unlike the BFA-sensitive cell lines such as Y1 adrenal and CHO cells, BFA at 1 μg/ml did not inhibit the cytotoxicity of CT in PtK1 cells, of which the Golgi structure was BFA-resistant. These results strongly suggest that a BFA-sensitive Golgi is required for the protection of CT cytotoxicity by BFA. In contrast, elevation of the intracellular cAMP by forskolin, which acts directly on the plasma membrane adenylate cyclase, was not affected by BFA. These observations indicate that the intoxication of target cells by CT requires an intact Golgi region for its intracellular trafficking and/or processing. In this respect, CT shares a common intracellular pathway with ricin, Pseudomonas toxin, and modeccin, even though their structures and modes of action are very different. © 1993 Wiley-Liss, Inc.  相似文献   
6.
7.
8.
Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB 1 -C-A-B 2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by “subunit-exchange”. To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.  相似文献   
9.
10.
Whereas cytochrome P-45011 beta has been recently shown to catalyze the two-step conversion of corticosterone to aldosterone in the bovine and porcine adrenal cortex, the identity of the enzyme involved in the two final steps of aldosterone biosynthesis in the rat adrenal cortex is as yet unknown. Mitochondria from capsular adrenals of sodium-deficient, potassium-replete rats converted corticosterone to 18-hydroxycorticosterone and aldosterone at markedly higher rates than mitochondria from capsular adrenals of sodium-replete, potassium-deficient rats. However, the same preparations exhibited no difference in the 11 beta-hydroxylase activity, i.e. the conversion of deoxycorticosterone to corticosterone. Only mitochondria of zona glomerulosa from rats with stimulated aldosterone biosynthesis contained a 49K protein which showed a strong cross-reactivity with a monoclonal antibody raised against purified bovine cytochrome P-45011 beta. By contrast, a crossreactive protein with a molecular weight of 51K was found in mitochondria of zona fasciculata and in mitochondria of zona glomerulosa from rats with a suppressed aldosterone biosynthesis. These findings indicate the existence of two different forms of cytochrome P-45011 beta in the rat adrenal cortex, with only one of them, i.e. the 49K form, being capable of catalyzing the two final steps of aldosterone biosynthesis in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号