首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40698篇
  免费   3339篇
  国内免费   3806篇
  2024年   63篇
  2023年   543篇
  2022年   753篇
  2021年   2293篇
  2020年   1616篇
  2019年   2026篇
  2018年   1907篇
  2017年   1364篇
  2016年   1903篇
  2015年   2751篇
  2014年   3178篇
  2013年   3469篇
  2012年   3895篇
  2011年   3485篇
  2010年   2024篇
  2009年   1928篇
  2008年   2184篇
  2007年   1943篇
  2006年   1661篇
  2005年   1312篇
  2004年   1046篇
  2003年   957篇
  2002年   760篇
  2001年   608篇
  2000年   586篇
  1999年   550篇
  1998年   343篇
  1997年   325篇
  1996年   315篇
  1995年   285篇
  1994年   267篇
  1993年   186篇
  1992年   263篇
  1991年   225篇
  1990年   166篇
  1989年   128篇
  1988年   108篇
  1987年   97篇
  1986年   60篇
  1985年   65篇
  1984年   37篇
  1983年   40篇
  1982年   28篇
  1981年   24篇
  1980年   11篇
  1979年   7篇
  1978年   8篇
  1973年   5篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Two A strain influenza viruses, A/Hong Kong/123/77 (A/HK/123/77) (H1N1) and A/Queensland/6/72 (A/Qld/6/72) (H3N2), and the two cold-adapted reassortants which possess the surface antigens of these strains (CR35 and CR6, respectively) were tested for their ability both to induce primary cytotoxic T-cell (Tc cell) responses in mice and to sensitize mice for a second Tc cell response when challenged with a distantly related A strain virus, A/Shearwater/72 (H6N5). After intranasal inoculation, A/Qld/6/72 replicated to higher titers in the lung (1 to 2 log10 50% egg infective doses) than did A/HK/123/77 or either of the reassortants. A/Qld/6/72 induced higher Tc cell responses in the lung than did CR6, and both were more effective than either A/HK/123/77 or CR35 in this respect. When similar doses (10 or 10(3) hemagglutinin units) of each virus were injected intravenously into mice and the spleens were tested for Tc cell activity 6 days later, both A/Qld/6/72 and CR6 were ca. 100-fold better at inducing a primary Tc cell response than A/HK/123/77 or CR35. In contrast, the H1N1 and H3N2 viruses gave rather similar anti-hemagglutinin antibody titers (after intravenous injection) and delayed-type hypersensitivity reactions (after subcutaneous injection). If mice were primed with a low dose of these viruses (10(4) 50% egg infective doses intranasally), A/Qld/6/72 and CR6 were more effective than A/HK/123/77 or CR35 at sensitizing for a secondary Tc cell response when challenged with A/Shearwater/72, but if larger doses were given either intranasally (10(6) 50% egg infective doses) or intravenously (10 to 10(3) hemagglutinin units), all viruses sensitized the mice equally well, despite the fact the A/Shearwater/72 gives a poor primary Tc cell response in mice. Thus, the viral glycoprotein antigens can be important in determining the immunogenicity of the virus and, particularly, the class I antigen-restricted Tc cell response of the host.  相似文献   
3.
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
5.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
6.
7.
8.
  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号