首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2001年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
2.
A series of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazol-2-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (11a-n) and (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazole-1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (12a-n) has been synthesized. The antifungal activity of compounds was evaluated by in vitro agar diffusion and broth dilution assay. Compounds 11d and its positional isomer 12d having 3-trifluoromethyl substitution on the phenyl ring of piperazine demonstrated significant antifungal activity against variety of fungal cultures (Candida spp. C. neoformans and Aspergillus spp.). The compound 12d showed MIC value of 0.12 microg/mL for C. albicans, C. albicans V-01-191A-261 (resistant strain); 0.25 microg/mL for C. tropicalis, C. parapsilosis ATCC 22019 and C. krusei and MIC value of 0.5 microg/mL for C. glabrata, C. krusei ATCC 6258, which is comparable to itraconazole and better than fluconazole. Further, compound 11d showed significant activity (MIC; 0.25-0.5 microg/mL) against Candida spp. and strong anticryptococcal activity (MIC; 0.25 microg/mL) against C. neoformans.  相似文献   
3.
4.
We have previously demonstrated the effectiveness of adenovirus-mediated expression of antisense urokinase-type plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) in inhibiting tumor invasion in vitro and ex vivo. However, the therapeutic effect of the adenovirus-mediated antisense approach was shown to be transient and required potentially toxic, high viral doses. In contrast, RNA interference (RNAi)-mediated gene targeting may be superior to the traditional antisense approach, because the target mRNA is completely degraded and the molar ratio of siRNA required to degrade the target mRNA is very low. Here, we have examined the siRNA-mediated target RNA degradation of uPAR and MMP-9 in human glioma cell lines. Using RNAi directed toward uPAR and MMP-9, we achieved specific inhibition of uPAR and MMP-9. This bicistronic construct (pUM) inhibited the formation of capillary-like structures in both in vitro and in vivo models of angiogenesis. We demonstrated that blocking the expression of these genes results in significant inhibition of glioma tumor invasion in Matrigel and spheroid invasion assay models. RNAi for uPAR and MMP-9 inhibited cell proliferation, and significantly reduced the levels of phosphorylated forms of MAPK, ERK, and AKT signaling pathway molecules when compared with parental and empty vector/scrambled vector-transfected SNB19 cells. Furthermore, using RNAi to simultaneously target two proteases resulted in total regression of pre-established intracerebral tumor growth. Our results provide evidence that the use of hairpin siRNA expression vectors for uPAR and MMP-9 may provide an effective tool for cancer therapy.  相似文献   
5.
Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell-cell and cell-matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo.  相似文献   
6.
A combination of controlled radical polymerization and azide-alkyne click chemistry was employed to prepare temperature-responsive block copolymer micelles conjugated with biological ligands with potential for active targeting of cancer tissues. Block copolymers of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization with an azido chain transfer agent (CTA). Pseudo-first-order kinetics and linear molecular weight dependence on conversion were observed for the RAFT polymerizations. CuI-catalyzed coupling with propargyl folate resulted in folic acid residues being efficiently conjugated to the alpha-azido chain ends of the homo and block copolymers. Temperature-induced self-assembly resulted in aggregates capable of controlled release of a model hydrophobic drug. CuI-catalyzed azide-alkyne cycloaddition has proven superior to conventional methods for conjugation of biological ligands to macromolecules, and the general strategy presented herein can potentially be extended to the preparation of folate-functionalized assemblies with other stimuli susceptibility (e.g., pH) for therapeutic and imaging applications.  相似文献   
7.

Background

Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.

Methodology/Principal Findings

MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of αVβ3, α6β1 and α9β1 integrins in xenograft cells. Treatment with bicistronic constructs reduced αVβ3, α6β1 and α9β1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.

Conclusions/Significance

Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma.  相似文献   
8.
Bixa orellana L. is a tree native to South America known for its reddish orange pigment ‘annatto’ produced only on the aril portion of its seeds. It is the most preferred natural food colorant next to saffron, having wide applications in the dairy industry and also as a cosmeceutical. Normal root cultures of B. orellana were established under in vitro conditions on Murashige and Skoog (MS) medium containing α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) at 0.05–0.2 mg l−1. The annatto pigment from in vitro-raised normal roots was extracted with chloroform, and later the ethanol-dissolved extract was analyzed both qualitatively by thin-layer chromatography (TLC) and spectrophotometrically quantified followed by High Performance Liquid Chromatography (HPLC) confirmation. The maximum amount of annatto pigment (346 ± 3.8 mg/100 g dry wt.) and maximum root biomass (152 ± 2.5 mg dry wt.) were recorded after 45 and 60 days of growth, respectively, on MS medium containing 0.1 mg l−1 indole-3-butyric acid (IBA). Producing annatto pigment from normal root cultures under in vitro conditions is a novel approach when compared to the natural annatto pigment that is produced only on the aril portion of seeds. This allows the production of fresh pigment throughout the year.  相似文献   
9.
Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode’s symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号