首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有37条查询结果,搜索用时 125 毫秒
1.
2.
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.  相似文献   
3.
Several independent research studies have shown that consumption of green tea reduces the development of cancer in many animal models. Epidemiological observations, though inconclusive, are suggesting that green tea consumption may also reduce the risk of some cancers in humans. These anti-carcinogenic effects of green tea have been attributed to its constituent polyphenols. Angiogenesis is a crucial step in the growth and metastasis of cancers. We have investigated the effect of the major polyphenolic constituent of green tea, epigallocatechin-3-gallate (EGCG), on the tube formation of human umbilical vein endothelial cells (HUVEC) on matrigel. Tube formation was inhibited by treatment both prior to plating and after plating endothelial cells on matrigel. EGCG treatment also was found to reduce the migration of endothelial cells in matrigel plug model. The role of matrix metalloproteinases (MMP) has been shown to play an important role during angiogenesis. Zymography was performed to determine if EGCG had any effect on MMPs. Zymographs of EGCG-treated culture supernatants modulated the gelatinolytic activities of secreted proteinases indicating that EGCG may be exerting its inhibitory effect by regulating proteinases. These findings suggest that EGCG acts as an angiogenesis inhibitor by modulating protease activity during endothelial morphogenesis.  相似文献   
4.
We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung''s structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-4 treatment. However, analysis of co-stimulatory expression on pulmonary epithelial cells revealed that pre-treatment of epithelial cells with IL-4 changed expression GITR-L, suggesting a possible mechanism for the effects observed. Our studies provide new insight into the role of IL-4 during the early phases of pulmonary sensitization: The inhibitory activity of pulmonary epithelial cells in homeostasis is reversed in the presence of IL-4, which is secreted in the context of Th2-dominated allergic airway inflammation. This mechanism might serve to explain facilitated sensitization in the clinical context of polysensitization where due to a pre-existing sensitization increased levels of IL-4 in the airways might facilitate T cell priming towards new antigens.  相似文献   
5.
Microcystis aeruginosa immobilized in a natural polymer was tested for its potential to remove Cu2+ ions from aqueous solution in a continuous, downflow packed columnar reactor. Various parameters like flow rate, bed height and contact time required for maximum removal of test metals by the immobilized Microcystis aeruginosa were optimized. An increase in bed height from 2 to 10 cm resulted in an apparent decrease in biosorption capacity from 8.94 to 5.34 mg g–1, but more Cu2+ solution was purified at the higher bed height. Efficiency of metal recovery from Cu2+-loaded biomass and its subsequent regeneration was also determined. Immobilized M. aeruginosa was found to be effective in Cu2+ removal from solution for up to 10 cycles of adsorption–desorption and 1 M HCl is very efficient desorbent for regeneration of Microcystis biomass for reuse.  相似文献   
6.
7.
Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural and functional characteristics by using various bioinformatics tools and databases. The analysis revealed that some of them possessed functionally important domains and families and protein-protein interacting partners which were ABC transporter ATP-binding protein, Multiple Antibiotic Resistance (MAR) family, export proteins, Helix-Turn-helix domains, arsenate reductase, elongation factor, ribosomal proteins, Cysteine protease precursor, Type-I restriction endonuclease enzyme and plasmid recombination enzyme which might have the same functions in hypothetical proteins. The structural prediction of those proteins and binding sites prediction have been done which would be useful in docking studies for aiding in the drug discovery.  相似文献   
8.

Background

Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin αIIbβ3. Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c) interacts with αIIbβ3, the role of PP1c in platelet reactivity is unclear.

Methodology/Principal Findings

Using γ isoform of PP1c deficient mice (PP1cγ−/−), we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4)-activating peptide but not to adenosine diphosphate (ADP), collagen or collagen-related peptide (CRP). Thrombin-stimulated PP1cγ−/− platelets showed decreased αIIbβ3 activation despite comparable levels of αIIbβ3, PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin αIIbβ3 signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cγ−/− platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cγ−/− mice. Phosphorylation of glycogen synthase kinase (GSK3)β-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cγ−/− platelets by an AKT independent mechanism. Inhibition of GSK3β partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cγ−/− platelets.

Conclusions/Significance

These studies illustrate a role for PP1cγ in maintaining GSK3β-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation.  相似文献   
9.
Biochanin-A (BCA), is an isoflavonoid, exhibits protective effects against various diseases. This study was conducted to observe the effect of BCA on isoprenaline (ISP)-induced cardiac fibrosis and explore the underlying mechanism. The curative effect of BCA was investigated with oral administration for 14 days in ISP-induced cardiac fibrosis in mice. The fibrotic biomarkers, like collagen I and III, were estimated by ELISA. Commercial kits were used to estimate cholesterol, triglycerides, and creatine kinase-myocardial band (CK-MB) levels. The messenger ribonucleic acid (mRNA) expression studies were performed by quantitative real-time polymerase chain reaction. Gelatin zymography was used to study the expression of matrix metalloproteinases-2 (MMP-2). BCA co-administration significantly improved the morphometric parameters; including heart weight, heart weight to body weight, heart weight to tibial length, and lipid profile. BCA treatment showed a reduction in inflammatory cells and collagen deposition as depicted in the histopathology of heart tissues. The enhanced levels of collagen-I, III, and hydroxyproline were significantly decreased by BCA co-treatment, whereas CK-MB level was reduced slightly. BCA co-administration increased the activity of reduced glutathione enzyme, showing the antioxidative effects of BCA. BCA treatment significantly reduced interleukin-6 (Il6) inflammatory cytokine along with partially decreased mRNA expression of fibrotic signaling markers such as natriuretic peptide type B (Nppb), α-smooth muscle actin (Acta2), connective tissue growth factor (Ctgf), transforming growth factor β (Tgfb), small mothers against decapentaplegic homolog-3 (Smad-3). However, BCA did not modify Mmp-2 expression, which was significantly increased by ISP. In conclusion, BCA exerts an antifibrotic effect by modulating lipid profile, enhancing antioxidant enzyme, and reducing collagen content and inflammation.  相似文献   
10.
Integrin αIIbβ3 signaling mediated by kinases and phosphatases participate in hemostasis and thrombosis, in part, by supporting stable platelet adhesion. Our previous studies indicate that the genetic manipulation of PP2Acα (α isoform of the catalytic subunit of protein phosphatase 2A) negatively regulate the adhesion of human embryonal kidney 293 cells expressing αIIbβ3 to fibrinogen. Here, we demonstrated that small interference RNA (siRNA) mediated knockdown of PP2Acα in 293 αIIbβ3 cells led to the dephosphorylation of Src Tyr-529, phosphorylation of Src Tyr-418 and an increased Src kinase activity. Conversely, overexpression of PP2Acα decreased the basal Src activity. Pharmacological inhibition of PP2Ac in human platelets or PP2Acα knockdown in primary murine megakaryocytes resulted in Src activation. PP2Acα-depleted 293 αIIbβ3 cells did not alter the serine (Ser) phosphorylation of Src but enhanced the Ser-50 phosphorylation of protein tyrosine phosphatase 1B (PTP-1B) with a concomitant increase in the PTP-1B activity. Src activation in the PP2Acα-depleted 293 αIIbβ3 cells was abolished by siRNA mediated knockdown of PTP-1B. Pharmacological inhibition of Src or knockdown of Src, PTP-1B blocked the enhanced activation of extracellular signal-regulated kinase (ERK1/2) and the increased adhesiveness of PP2Acα-depleted 293 αIIbβ3 cells to fibrinogen, respectively. Thus, inactivation of PP2Acα promotes hyperphosphorylation of PTP-1B Ser-50, elevates PTP-1B activity, which dephosphorylates Src Tyr-529 to activate Src and its downstream ERK1/2 signaling pathways that regulate αIIbβ3 adhesion. Moreover, these studies extend the notion that a cross-talk between Ser/Thr and Tyr phosphatases can fine-tune αIIbβ3 outside-in signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号