首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44455篇
  免费   5172篇
  国内免费   17篇
  2021年   555篇
  2020年   366篇
  2019年   457篇
  2018年   526篇
  2017年   473篇
  2016年   826篇
  2015年   1388篇
  2014年   1520篇
  2013年   1930篇
  2012年   2333篇
  2011年   2269篇
  2010年   1490篇
  2009年   1333篇
  2008年   1930篇
  2007年   1934篇
  2006年   1820篇
  2005年   1752篇
  2004年   1695篇
  2003年   1688篇
  2002年   1670篇
  2001年   1077篇
  2000年   1028篇
  1999年   956篇
  1998年   622篇
  1997年   540篇
  1996年   512篇
  1995年   459篇
  1994年   453篇
  1993年   472篇
  1992年   789篇
  1991年   737篇
  1990年   731篇
  1989年   771篇
  1988年   674篇
  1987年   710篇
  1986年   576篇
  1985年   664篇
  1984年   600篇
  1983年   516篇
  1982年   555篇
  1981年   492篇
  1980年   438篇
  1979年   515篇
  1978年   476篇
  1977年   422篇
  1976年   384篇
  1975年   396篇
  1974年   450篇
  1973年   428篇
  1972年   365篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Pseudorevertants of an Escherichia coli exonuclease V (RecBC enzyme)-negative mutant have been isolated after ethyl methane sulfonate mutagenesis of a recC73 (presumed missense) mutant. The remedial mutations in each of the four pseudorevertants studied in detail map and complement as recC mutations. By several criteria, such as recombination proficiency, support of phage growth, RecBC nuclease activity, and cell viability, the pseudorevertants appear to have regained partially or completely various aspects of RecBC activity. However, chi recombinational hotspots, which stimulate exclusively the RecBC pathway of recombination, have no detectable activity in lambda vegetative crosses in the pseudorevertants. The properties of these mutants, in which the RecBC pathway of recombination is active yet in which chi is not active, are consistent with the hypothesis that wild-type RecBC enzyme directly interacts with chi sites; alternatively, the mutants may block or bypass the productive interaction of another recombinational enzyme with chi.  相似文献   
5.
6.
Selective diapedesis of Th1 cells induced by endothelial cell RANTES.   总被引:16,自引:0,他引:16  
Differentiated CD4 T cells can be divided into Th1 and Th2 types based on the cytokines they produce. Differential expression of chemokine receptors on either the Th1-type or the Th2-type cell suggests that Th1-type and Th2-type cells differ not only in cytokine production but also in their migratory capacity. Stimulation of endothelial cells with IFN-gamma selectively enhanced transmigration of Th1-type cells, but not Th2-type cells, in a transendothelial migration assay. Enhanced transmigration of Th1-type cells was dependent on the chemokine RANTES produced by endothelial cells, as indicated by the findings that Ab neutralizing RANTES, or Ab to its receptor CCR5, inhibited transmigration. Neutralizing Ab to chemokines macrophage-inflammatory protein-1alpha or monocyte chemotactic protein-1 did not inhibit Th1 selective migration. Whereas anti-CD18 and anti-CD54 blocked basal levels of Th1-type cell adherence to endothelial cells and also inhibited transmigration, anti-RANTES blocked only transmigration, indicating that RANTES appeared to induce transmigration of adherent T cells. RANTES seemed to promote diapedesis of adherent Th1-type cells by augmenting pseudopod formation in conjunction with actin rearrangement by a pathway that was sensitive to the phosphoinositol 3-kinase inhibitor wortmannin and to the Rho GTP-binding protein inhibitor, epidermal cell differentiation inhibitor. Thus, enhancement of Th1-type selective migration appeared to be responsible for the diapedesis induced by interaction between CCR5 on Th1-type cells and RANTES produced by endothelial cells. Further evidence that CCR5 and RANTES play a modulatory role in Th1-type selective migration derives from the abrogation of this migration by anti-RANTES and anti-CCR5 Abs.  相似文献   
7.
In C4 plants phosphoenolpyruvate (PEP) of the C4 cycle may betransported on a chloroplast transporter which also transports3-phosphoglycerate (3-PGA) and triosephosphates. In C3 plantsPEP is not considered to be effectively transported on the chloroplastphosphate translocator. The influences of certain organic phosphates,having a similar structure to either PEP or triose-phosphates,on 3-PGA dependent O2 evolution by C4 (Digitaria sanquinalisL. Scop.) and C3 (Hordeum vulgare L.) mesophyll chloroplastswere investigated. In the C4 mesophyll chloroplasts phosphoglycolatewas a competitive inhibitor (Ki = 2.1 mM) of 3-PGA dependentO2 evolution, and was as effective as previously reported forPEP. 2-Phosphoglycerate was also a competitive inhibitor (Kt= 8.6 mM) of O2 evolution in the C4 mesophyll chloroplasts with3-PGA as substrate, while phospholactate was a weak inhibitorand glyphosate had no effect. Neither PEP, phosphoglycolatenor 2-phosphoglycerate were effective inhibitors of 3- PGA dependentO2 evolution in the C3 chloroplasts. Phosphohydroxypyruvatewas a competitive inhibitor of 3-PGA dependent O22 evolutionin both chloroplast types. The selectivity in inhibition ofO2 evolution with 3-PGA as substrate suggests that the C4 mesophyllchloroplasts can recognize certain organic phosphates with thephosphate in the C-2 or C-3 position but that the C4 mesophyllchloroplasts can only effectively recognize certain organicphosphates with the phosphate in the C-3 position. The resultsalso support the view that 3-PGA and PEP are transported onthe same phosphate translocator in C4 mesophyll chloroplasts. 1 Current address: Department of Horticulture, 2001 Fyffe Court,The Ohio State University, Columbus, Ohio 43210-1096. (Received March 24, 1987; Accepted April 16, 1987)  相似文献   
8.
9.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
10.
Morphological taxonomy of simple Hyphomycetes is complicated by the frequent occurrence of pleoanamorphism. In some groups of yeast-like fungi, uncommon synanamorphs are diagnostic. Differences in conidiogenesis do not always delimit natural groups. Some nomenclatural problems are mentioned, with an emphasis on the need of neotypification. Prospects are sketched for future taxonomic research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号