首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1976年   11篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1971年   8篇
  1970年   3篇
  1969年   6篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
  1957年   1篇
排序方式: 共有137条查询结果,搜索用时 125 毫秒
1.
The proteolytic activity directed against apolipoprotein A-II (apo-A-II) which is released from human blood polymorphonuclear cells (PMN) when they are incubated with human plasma high-density lipoprotein-3 (HDL3) was studied to assess the properties and site specificity of the enzyme. When 125I-apo-A-II-labeled HDL3 was incubated with the PMN protease at 37 degrees C, a complete cleavage of apo-A-II was observed which paralleled the formation of bands of approximately 11,000 and 7,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 7,000-dalton component had the following N-terminal sequence: NH2-Thr-Asp-Tyr-Gly-Lys-Asp-Leu-Met-Glu-Lys. This corresponds to residues 19 through 28 of the intact apo-A-II monomer. Methoxysuccinyl (MeO-Suc)-Ala-Ala-Pro-Val-chloromethylketone-(CH2Cl) caused a 90% inhibition of apo-A-II hydrolysis at the highest concentration tested (6 X 10(-4)M). Besides apo-A-II, the PMN enzyme also hydrolyzed a synthetic substrate, MeO-Suc-Ala-Ala-Pro-Val-4-nitroanilide and its 4-methylcoumaryl-7-amide analogue. The protease appeared to have a mass of 28,000 daltons as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the [3H]diisopropylfluorophosphate-labeled PMN enzyme. That the PMN enzyme which cleaves apo-A-II is an elastase was derived from the following criteria: 1) cleavage at the Val-X bond in apo-A-II and in the two synthetic substrates studied; 2) prevention of the cleavage by MeO-Suc-Ala-Ala-Pro-Val-CH2Cl, a known specific elastase inhibitor; and 3) a mass comparable to that reported for a pure PMN elastase. These studies establish that apolipoproteins can be suitable substrates for enzymes of the elastase family.  相似文献   
2.
A monoclonal antibody, B10, generated against pure human lecithin-cholesterol acyltransferase (EC 2.3.1.43) caused the inhibition of the esterolytic and cholesterol esterifying activities of the enzyme. This antibody also reacted with a number of pancreatic and snake venom phospholipases A2 species but not phospholipase A1. A concentration-dependent inhibition of phospholipase A2 was also seen in the presence of B10. Treatment of lecithin-cholesterol acyltransferase or B10-reacting phospholipases with phenacyl bromide, a reagent known to interact with the active site of phospholipase A2, inhibited both their esterolytic activity and their capacity to bind to B10. A dimeric phospholipase A2 species with a known occluded active site did not cross-react with B10. Thus, lecithin-cholesterol acyltransferase and some enzymes of the phospholipase A2 family share a common antigenic determinant which is probably located near or at their esterolytic active site.  相似文献   
3.
Chemical reduction of human plasma lipoprotein(a) (Lp(a)) yielded two water-soluble products which were separated by rate zonal ultracentrifugation. Apolipoprotein(a) (apo(a)) was completely recovered from the bottom of the gradient, whereas lipoprotein(a-) (Lp(a-)), which contained all of the lipids and apo-B100 of Lp(a), floated. By the techniques of circular dichroism and viscometry Lp(a-) was identical to low density lipoprotein (LDL). Lp(a-) was slightly larger in mass than autologous LDL and contained proportionally more triglyceride. The difference in mass between Lp(a) and Lp(a-) was accounted for by the loss of 2 molecules of apo(a) from the Lp(a) particle. The molecular weight of reduced and carboxymethylated apo(a) was 281,000 as determined by sedimentation equilibrium in 6 M guanidine HCl. By circular dichroism the structure of apo(a) was mostly random (71%) with the remainder representing 8% alpha-helix and 21% beta-sheet; its intrinsic viscosity, 28.3 cm3/g, was consistent with an extended flexible coil. The amino acid composition was characterized by an unusually high content of proline (11.4 mol %) as well as tryptophan, tyrosine, arginine, threonine, and a low amount of lysine, phenylalanine, and isoleucine. Apo(a) contained 28.1% carbohydrate by weight represented by mannose, galactose, galactosamine, glucosamine, and sialic acid in an approximate molar ratio of 3:7:5:4:7, respectively. Overall, the structure of Lp(a) appears to be consistent with a rigid spherical LDL-like core particle which, as a consequence of its association with a flexible glycoprotein such as apo(a), favors the entrapment of significant amounts of hydrodynamically associated solvent. Furthermore, the Lp(a-) remnant generated by the removal of apo(a) from Lp(a) was similar in structure but not identical to autologous LDL.  相似文献   
4.
Plasma high-density lipoproteins (HDL) can provide rat ovary steroidogenic tissue with cholesterol for steroid hormone production, but the mechanism of cholesterol transfer is unknown. To test the importance of apolipoprotein A-I (the major HDL apolipoprotein) in HDL-cell interactions, we examined the ability of canine-human HDL hybrids containing various proportions of canine apolipoprotein A-I and human apolipoprotein A-II to stimulate steroidogenesis by cultured rat ovary granulosa cells. We observed that as the apolipoprotein A-II to apolipoprotein A-II ratio decreased, the ability of the hybrid particles to stimulate granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, apolipoprotein A-I was not necessary for cholesterol transfer, since hybrids with less than 5% of their total apolipoprotein mass as apolipoprotein A-I stimulated progestin production 30% as effectively as canine HDL, which contained essentially only apolipoprotein A-I. These data indicate that the delivery of cholesterol from HDL into the rat ovary cell for steroidogenesis is not strictly dependent on the presence of a specific HDL apolipoprotein.  相似文献   
5.
Human high-density lipoprotein class-3 (HDL3) was incubated with freshly isolated blood polymorphonuclear leukocytes (PMN) at 37 and 4 degrees C. At both temperatures the release of proteolytic activity (PA) causing the specific hydrolysis of apo-A-II was dependent on the concentration of HDL3 in the medium. At 37 degrees C, the efflux of PA was linear and no saturation was reached up to an HDL3 protein concentration in the medium of 800 micrograms/ml. In turn, at 4 degrees C, maximal PA release was reached at a concentration below 600 micrograms/ml of HDL3 protein/ml in the medium. Canine HDL, which contains apo-A-I, but not apo-A-II, was as effective as human HDL3 in promoting the release of PA from PMN. This property was also exhibited by egg lecithin/cholesterol vesicles containing apo-A-I. At 4 degrees C, there was no strict correlation between efflux of PA affected by HDL3 and specific binding of 125I-apo-A-I (HDL3). In competitive binding experiments, a 50-fold excess of unlabeled HDL3 prevented more than 90% of the binding of 125I-apo-A-I (HDL3) to PMN, whereas an excess of unlabeled low-density lipoprotein exhibited no effect. When human HDL3 was incubated with PMN at 4 or 37 degrees C and then subjected to ultracentrifugation at d 1.21 g/ml, most of the PA that was initially associated with this lipoprotein was recovered in the bottom of the tube. By gel filtration, both PA and HDL3 were in the same peak in a low ionic strength buffer, but were dissociated from each other by a high-salt solution (d 1.21 g/ml). We conclude that both naturally occurring HDLs and apo-A-I-stabilized lipid vesicles favor the release from PMN of an enzymatic activity which cleaves human apo-A-II. This release appears to be dependent both on the interaction of the cells with the lipoprotein ligand and on the lipoprotein surface area acting as the acceptor for the enzyme, probably through electrostatic forces.  相似文献   
6.
The steps involved in the initial assembly of apolipoproteins and lipids into supramolecular arrays (nascent lipoprotein particles) are largely unknown. Examination of the proteolytic processing and compartmentalization of the primary translation products of apolipoprotein mRNAs represents one approach to deciphering the molecular details of lipoprotein assembly. The structures of the primary translation products of seven mammalian apolipoprotein mRNAs has been determined in the past several years. The organization of apolipoprotein signal peptides is typical of eukaryotic prepeptides, although an unusual degree of sequence conservation is present among the signal segments of apo AI, AIV, and E. For those apolipoprotein sequences studied in detail, SRP-dependent cotranslational translocation and proteolytic processing appears to be highly efficient and results in sequestration of the processed protein within the lumen of the endoplasmic reticulum (ER). However the mechanism by which these lipid-binding proteins avoid arrest during their translocation through the lipid bilayer of the ER membrane remains obscure. The two principal human HDL apolipoproteins undergo novel extracellular post-translational proteolytic processing, which results in removal of nonhomologous propeptides. The proteases responsible for proapo AI and AII processing appear to be different. The processing of these proapolipoproteins provides a potential series of steps for regulating the ordered assembly of HDL constituents.  相似文献   
7.
The most frequently occurring kringle 4 domain of human apolipoprotein (a), Kringle 4-subtype 2 (K4(2)), was expressed as a fusion protein with the maltose binding protein in Escherichia coli using the "tac" promoter. Although the fusion protein was expressed without a signal sequence, 25% was secreted into the periplasmic space; the remainder was found associated with the soluble cytosolic fraction. The fusion protein was readily isolated from whole cell lysate by amylose agarose affinity chromatography. Although a factor Xa cleavage site was engineered into the fusion protein, it was found that release of the K4(2) protein was most conveniently achieved by proteolysis with subtilisin A. The cleavage product produced in this way was shown to be intact K4(2) with only the first three amino acid residues of the leading flanking peptide missing, as judged by N-terminal sequence analysis. K4(2) was isolated from the hydrolysate by FPLC on a Mono-Q column with a yield of 170 +/- 30 micrograms/g wet cells. The resulting protein was monomeric in phosphate-buffered saline as judged by size-exclusion chromatography and appeared to be folded as shown by spectroscopic and immunological assays. The recombinant K4(2) did not bind to either lysine- or proline-Sepharose, suggesting that the ligand binding activities of lipoprotein (a) may reside in the other kringle domains of apolipoprotein (a).  相似文献   
8.
Starting from a single-spin ultracentrifugation procedure described previously (Foreman et al., J. Lipid Res. 18, 759, 1977), we have improved the system for detection of the fractions eluted from the gradient by monitoring them continuously at 280 nm. A graphic display readily permits assessment of the distribution of the lipoproteins and their quantification with the aid of a computer program. By the use of appropriate factors, one can convert absorbance readings into actual lipoprotein values which correspond well (±7% for low-density lipoproteins and ±5% for high-density lipoproteins) to those obtained by means of chemical analyses. The examples provided indicate the versatility of the method and its sensitivity (down to 0.1 ml of serum).  相似文献   
9.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   
10.
Five glycosphingolipids (GSL), glucosylceramide, lactosylceramide, trihexosylceramide, globoside, and hematoside (GM3) were studied in serum from normal human subjects and patients with dyslipoproteinemia and found to be exclusively associated with the various classes of serum lipoproteins. Based on a unit weight of lipoprotein protein, the total amount of GSL in serum normal subjects was twice as high in very low density lipoprotein (VLDL) (d less than 1.006 g/ml) and low density lipoprotein (LDL) (d 1.019-1.063 g/ml) as in high density lipoproteins HDL2 (d 1.063-1.125 g/ml) or HDL3 (d 1.125-1.21 g/ml). In abetalipoproteinemia the levels of serum GSL were slightly reduced when compared to normal serum and were all found in the only existing lipoprotein, HDL; this contained 2-3 moles of GSL/ mole of lipoprotein as compared to 0.5 GSL/mole in normal HDL. In hypobetalipoproteinemia and Tangier disease, the serum glycosphingolipids were 10 to 30% reduced in concentration compared to the 75% reduction in other lipids, and were again found to be associated only with the serum lipoproteins. The relative proportions of GSL did not vary substantially in the normo- and hypolipidemic subjects studied. Only in patients with homozygous familial hypercholesterolemia was there a significant (3-4-fold) elevation of all of the five GSL species and this elevation of all of the five GSL species and this elevation correlated well with that of the circulating cholesterol and LDL. On a molar basis the LDL of these patients contained the same amount of GSL as normal subjects (5 moles GSL/mole protein). It is concluded that: (1) glycosphingolipids are associated only with the major lipoprotein classes in both normal and dyslipoproteinemic serum; (2) the relative proportions of the five glycosphingolipids are not significantly affected by dyslipoproteinemia; (3) only in severe hypolipoproteinemia do the remaining serum lipoproteins carry a complement of glycosphingolipids greater than normal. Although our results establish that glycosphingolipids are intimately associated with serum lipoproteins, the mode of association or the structural and functional significance of such an association remains undetermined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号