首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   12篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
排序方式: 共有56条查询结果,搜索用时 21 毫秒
1.
Summary Lymphokine production by human melanoma tumor-infiltrating lymphocytes (TIL) was studied. Uncultured TIL produced interferon (IFN), but not interleukin-2 (IL-2) or IL-4, in response to anti-CD3 mAb or IL-2. In bulk cultures, IL-2-activated TIL displaying autologous tumor-specific cytotoxicity (CTL-TIL) produced IFN in culture with medium alone, whereas IL-2-activated noncytotoxic TIL did not. Addition of anti-CD3 mAb or autologous tumor cells up-regulated IFN production in IL-2-activated TIL from 10 of 12 or 6 of 12 cases respectively. Those from 4 of 12 cases (2 CTL-TIL and 2 noncytotoxic TIL) produced IL-2 in culture with medium alone. At the clonal level, 5 (4 CD4+ and 1 CD8+) of 7 autologous tumor-specific CTL clones derived from TIL and 3 (2 CD4+ and 1 CD8+) of 7 noncytotoxic TIL clones produced IFN in culture with medium alone, which was up-regulated by adding anti-CD3 mAb. Two IFN-producing CTL clones tested produced IL-2 in 4 ×-concentrated supernatants from a 3.5-h culture with medium alone. Furthermore, 2 IFN-producing CTL clones tested expressed mRNA for both IFN and IL-2. IL-2 production and its mRNA expression were up- or down-regulated, respectively, by adding anti-CD3 mAb or autologous tumor cells. IL-4 production was not observed in culture either with medium alone or with IL-2 in any of the cells described above. Anti-CD3 mAb was required for IL-4 production in 3 of 12 IL-2-activated TIL, 2 of 6 CTL clones, and none of 5 noncytotoxic TIL clones. In summary, IFN production was characteristic of melanoma TIL. Some autologous tumor-specific CTL in TIL are suggested to be productive of IL-2 and IFN under unstimulated conditions, both being required for self-activation in an autocrine loop.This work was supported in part by grant CA-47891 from the National Cancer Institute  相似文献   
2.
Batch cultures ofA. vinelandii in ammonium phosphate-limited and N-free phosphate-limited media were compared with control cultures (N-free phosphate-sufficient media). The effects of phosphate limitation on growth were determined by viable cells counts. Under phosphate-limitation conditions, growth inhibition and decreased viability were observed. Intracellular levels of RNA, poly-3-hydroxybutyrate, phosphate and oxygen uptake were significantly affected by phosphate limitation. When phosphate-limited cultures were examined microscopically, pleomorphism was more marked than in control cultures. Also phosphate-limited cells showed an increase in resistance to UV irradiation, mechanical disruption, desiceation and the combined action of ethylenediaminetetraacetie acid and lysozyme.  相似文献   
3.
4.
M.V. MARTINEZ-TOLEDO, J. GONZALEZ-LOPEZ, B. RODELAS, C. POZO AND V. SALMERON. 1995. Azotobacter chroococcum H23 is able to produce large amounts of poly-β-hydroxybutyrate (PHB) during growth in chemically-defined medium (N-free or with NH+4) and alpechin (wastewater from olive oil mills) medium. Polymer production was not dependent of the nutrient limitation. Strain H23 was capable of accumulating PHB up to 70% of the cell dry weight after 24 h incubation in chemically-defined media containing 1% glucose, fructose, mannitol, saccharose or starch. Azotobacter chroococcum grown on NH+4-medium supplemented with alpechin formed PHB up to 50% of the cell dry weight after 24 h, suggesting that these wastes could be utilized by Azotobacter as a cheap substrate for producing PHB.  相似文献   
5.
Plant disease resistance loci have been used successfully in breeding programs to transfer traits from resistant germplasm to susceptible plant cultivars. The molecular cloning of plant disease resistance genes now permits the transfer of such traits across species boundaries by genetic transformation of recipient hosts. The tomato disease resistance gene Pto confers resistance to strains of the bacterial pathogen Pseudomonas syringae pv tomato expressing the avirulence gene avrPto. Transformation of Nicotiana benthamiana with Pto results in specific resistance to P. s. pv tabaci strains carrying avrPto. The resistant phenotype is manifested by a strong inhibition of bacterial growth and the ability to exhibit a hypersensitive response. Resistance cosegregates with the Pto gene in transgene selfings and testcrosses. Our results demonstrate the conservation of disease resistance functions across genus boundaries and suggest that the utility of host-specific resistance genes can be extended by intergeneric transfer.  相似文献   
6.
We have employed a genetic approach to study the resistance of tomato to the phytopathogenic bacterium Pseudomonas syringae pv tomato. Resistance to P. s. tomato depends upon expression of the Pto locus in tomato, which encodes a protein with similarity to serine/threonine protein kinases and recognizes pathogen strains expressing the avirulence gene avrPto. Eleven tomato mutants were isolated with altered resistance to P. s. tomato strains expressing avrPto. We identified mutations both in the Pto resistance locus and in a new locus designated Prf (for Pseudomonas resistance and fenthion sensitivity). The genetic approach allowed us to dissect the roles of these loci in signal transduction in response to pathogen attack. Lines carrying mutations in the Pto locus vary 200-fold in the degree to which they are susceptible to P. s. tomato strains expressing avrPto. The pto mutants retain sensitivity to the organophosphate insecticide fenthion; this trait segregates with Pto in genetic crosses. This result suggested that contrary to previous hypotheses, the Pto locus controls pathogen recognition but not fenthion sensitivity. Interestingly, mutations in the prf locus result in both complete susceptibility to P. s. tomato and insensitivity to fenthion, suggesting that Prf plays a role in tomato signaling in response to both pathogen elicitors and fenthion. Because pto and prf mutations do not alter recognition of Xanthomonas campestris strains expressing avrBsP, an avirulence gene recognized by all tested tomato cultivars, Prf does not play a general role in disease resistance but possibly functions specifically in resistance against P. s. tomato. Genetic analysis of F2 populations from crosses of pto and prf homozygotes indicated that the Pto and Prf loci are tightly linked.  相似文献   
7.
The role of uncultured melanoma cells in the proliferation of autologous tumor-specific cytotoxic T lymphocytes (CTLs) was investigated. Uncultured autologous tumor cells by themselves induced modest, but significant, proliferation in 10 of 13 (77%) CTL clones and in only two of nine non-CTL clones. Uncultured allogenic melanoma cells mostly failed to induce CTL proliferation. Autologous tumor-induced CTL proliferation declined with increasing age of the culture. It did not correlate with IL-2 receptor-alpha expression or was not inhibited by addition of anti-IL-2 antibody to the culture. It was inhibited by pretreatment of tumor cells with anti-MHC class II, but not -MHC class I mAb. IL-2 alone was sufficient for the potent proliferation of five of nine CTL clones. In all these five CTL clones, autologous tumor cells suppressed IL-2-induced proliferation. The remaining four CTL clones, however, required both uncultured autologous melanoma cells and IL-2 for the proliferation. IL-4 or IL-6, in particular IL-6, facilitated IL-2-induced CTL proliferation, but not their cytotoxicity. In summary, uncultured melanoma cells by themselves induced modest levels of CTL proliferation in the context of MHC class II antigens, whereas they suppressed IL-2-induced CTL proliferation in more than half of the clones.  相似文献   
8.
Nicotine and tonic dopamine (DA) levels [as inferred by catechol‐O‐methyl tranferase (COMT) Val158Met genotype] interact to affect prefrontal processing. Prefrontal cortical areas are involved in response to performance feedback, which is impaired in smokers. We investigated whether there is a nicotine × COMT genotype interaction in brain circuitry during performance feedback of a reward task. We scanned 23 healthy smokers (10 Val/Val homozygotes, 13 Met allele carriers) during two fMRI sessions while subjects were wearing a nicotine or placebo patch. A significant nicotine × COMT genotype interaction for BOLD signal during performance feedback in cortico‐striatal areas was seen. Activation in these areas during the nicotine patch condition was greater in Val/Val homozygotes and reduced in Met allele carriers. During negative performance feedback, the change in activation in error detection areas such as anterior cingulate cortex (ACC)/superior frontal gyrus on nicotine compared to placebo was greater in Val/Val homozygotes compared to Met allele carriers. With transdermal nicotine administration, Val/Val homozygotes showed greater activation with performance feedback in the dorsal striatum, area associated with habitual responding. In response to negative feedback, Val/Val homozygotes had greater activation in error detection areas, including the ACC, suggesting increased sensitivity to loss with nicotine exposure. Although these results are preliminary due to small sample size, they suggest a possible neurobiological mechanism underlying the clinical observation that Val/Val homozygotes, presumably with elevated COMT activity compared to Met allele carriers and therefore reduced prefrontal DA levels, have poorer outcomes with nicotine replacement therapy .  相似文献   
9.
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR−/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.  相似文献   
10.
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome - lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3+ structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号