首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
  1994年   1篇
  1987年   1篇
  1977年   1篇
  1968年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Summary Nine organophosphate and carbamate insecticides were tested for effects on ability of Azotobacter vinelandii to reduce acetylene. Only GardonaR, at higher concentrations, was significantly inhibitory. The same pesticides were tested with soybeans (Glycine max L.). Some minor phytotoxic effects were noted, but there was no inhibition of the ability of the excised nodules of the plants to reduce acetylene.Published with the approval of the Director of the North Dakota Agricultural Experiment Station as Journal Article No. 726. Portion of a thesis presented by the senior author in partial fulfillment of the requirements for the M.S. degree in bacteriology at North Dakota State University.Published with the approval of the Director of the North Dakota Agricultural Experiment Station as Journal Article No. 726. Portion of a thesis presented by the senior author in partial fulfillment of the requirements for the M.S. degree in bacteriology at North Dakota State University.  相似文献   
2.
A metabolic shift from lactate production (LP) to net lactate consumption (LC) phenotype was observed in certain Chinese hamster ovary (CHO) cell lines during the implementation of a new chemically defined medium (CDM) formulation for antibody production. In addition, this metabolic shift typically leads to process performance improvements in cell growth, productivity, process robustness, and scalability. In our previous studies, a correlation between a key media component, copper, and this lactate metabolism shift was observed. To further investigate this phenomenon, two complementary studies were conducted. In the first study, a single cell line was cultivated in two media that only differed in their copper concentrations, yet were known to generate an LP or LC phenotype with that cell line. In the second study, two different cell lines, which were known to possess inherently different lactate metabolic characteristics, were cultivated in the same medium with a high level of copper; one cell line produced lactate throughout the duration of the culture, and the other consumed lactate after an initial period of LP. Cell pellet and supernatant samples from both studies were collected at regular time intervals, and their metabolite profiles were investigated. The primary finding from the metabolic analysis was that the cells in LP conditions exhibited a less efficient energy metabolism, with glucose primarily being converted into pyruvate, sorbitol, lactate, and other glycolytic intermediates. This decrease in energy efficiency may be due to an inability of pyruvate and acetyl-CoA to progress into the TCA cycle. The lack of progression into the TCA cycle or overflow metabolism in the LP phenotype resulted in the inadequate supply of ATP for the cells. As a consequence, the glycolysis pathway remained the major source of ATP, which in turn, resulted in continuous LP throughout the culture. In addition, the accumulation of free fatty acids was observed; this was thought to be a result of phospholipid catabolism that was being used to supplement the energy produced through glycolysis in order to meet the needs of LP cells. A thorough review of the metabolic profiles indicated that the lactate metabolic shift could be related to the oxidative metabolic capacity of cells.  相似文献   
3.
Xanthine oxidase (XO)-generated toxic O2 metabolites appear to contribute to reperfusion injury, but the possibility that XO is involved in hyperoxic or neutrophil elastase-mediated injury has not been investigated. We found that lungs isolated from rats fed a tungsten-rich diet had negligible XO activities and after exposure to hyperoxia developed less acute edematous injury during perfusion with buffer or purified neutrophil elastase than XO-replete lungs from control rats which had been exposed to hyperoxia. In parallel, tungsten-treated XO-depleted cultured bovine pulmonary arterial endothelial cells made less superoxide anion and as monolayers leaked less 125I-labeled albumin after exposure to neutrophil elastase than XO-replete endothelial cell monolayers. Our findings suggest that XO-derived O2 metabolites contribute to acute edematous lung injury from hyperoxia directly and by enhancing susceptibility to neutrophil elastase.  相似文献   
4.
5.
This study determined the changes in microRNA (miRs) expression in mammalian Chinese hamster ovary (CHO) cells undergoing apoptosis induced by exposing the cells to nutrient-depleted media. The apoptosis onset was confirmed by reduced cell viability and Caspase-3/7 activation. Microarray comparison of known mouse and rat miRs in CHO cells exposed to fresh or depleted media revealed up-regulation of the mouse miR-297-669 cluster in CHO cells subjected to depleted media. The mmu-miR-466h was chosen for further analysis as the member of this cluster with the highest overexpression and its up-regulation in depleted media was confirmed with qRT-PCR. Since miRs suppress mRNA translation, we hypothesized that up-regulated mmu-miR-466h inhibits anti-apoptotic genes and induces apoptosis. A combination of bioinformatics and experimental tools was used to predict and verify mmu-miR-466h anti-apoptotic targets. 8708 predicted targets were obtained from miRecords database and narrowed to 38 anti-apoptotic genes with DAVID NCBI annotation tool. Several genes were selected from this anti-apoptotic subset based on nucleotide pairing complimentarity between the mmu-miR-466h seed region and 3' UTR of the target mRNAs. The qRT-PCR analysis revealed reduced mRNA levels of bcl2l2, dad1, birc6, stat5a, and smo genes in CHO cells exposed to depleted media. The inhibition of the mmu-miR-466h increased the expression levels of those genes and resulted in increased cell viability and decreased Caspase-3/7 activation. The up-regulation of mmu-miR-466h in response to nutrients depletion causes the inhibition of several anti-apoptotic genes in unison. This suggests the pro-apoptotic role of mmu-miR-466h and its capability to modulate the apoptotic pathway in mammalian cells.  相似文献   
6.
Chronic hepatitis B infection (CHB) is characterized by sub-optimal T cell responses to viral antigens. A therapeutic vaccine capable of restoring these immune responses could potentially improve HBsAg seroconversion rates in the setting of direct acting antiviral therapies. A yeast-based immunotherapy (Tarmogen) platform was used to make a vaccine candidate expressing hepatitis B virus (HBV) X, surface (S), and Core antigens (X-S-Core). Murine and human immunogenicity models were used to evaluate the type and magnitude of HBV-Ag specific T cell responses elicited by the vaccine. C57BL/6J, BALB/c, and HLA-A*0201 transgenic mice immunized with yeast expressing X-S-Core showed T cell responses to X, S and Core when evaluated by lymphocyte proliferation assay, ELISpot, intracellular cytokine staining (ICS), or tumor challenge assays. Both CD4+ and CD8+ T cell responses were observed. Human T cells transduced with HBc18–27 and HBs183–91 specific T cell receptors (TCRs) produced interferon gamma (IFNγ following incubation with X-S-Core-pulsed dendritic cells (DCs). Furthermore, stimulation of peripheral blood mononuclear cells (PBMCs) isolated from CHB patients or from HBV vaccine recipients with autologous DCs pulsed with X-S-Core or a related product (S-Core) resulted in pronounced expansions of HBV Ag-specific T cells possessing a cytolytic phenotype. These data indicate that X-S-Core-expressing yeast elicit functional adaptive immune responses and supports the ongoing evaluation of this therapeutic vaccine in patients with CHB to enhance the induction of HBV-specific T cell responses.  相似文献   
7.
A selection experiment for sternopleural bristle number in Drosophila melanogaster was undertaken to analyze the correlated effects on recombination. Replicate lines were subjected to divergent directional selection and to stabilizing selection. Recombination rates for markers on chromosomes 2 (dp-cn-bw) and 3 (se-ss-ro) were compared to those from a control. All lines responded as predicted for bristle number. Lines selected for both increased and decreased bristle number exhibited significantly increased recombination rates. The predicted recombination response from stabilizing selection is suggested by our data, but only one comparison is statistically significant. These results, taken with other studies, support the proposal that genetic recombination enhances individual fitness when populations are experiencing environmental change. Less conclusively, our results suggest that populations undergoing stabilizing selection may respond by reducing their rates of crossing over.  相似文献   
8.
While many antibody therapeutics are formulated at low concentration (~10–20 mg/mL) for intravenous administration, high concentration (> 100 mg/mL) formulations may be required for subcutaneous delivery in certain clinical indications. For such high concentration formulations, product color is more apparent due to the higher molecular density across a given path-length. Color is therefore a product quality attribute that must be well-understood and controlled, to demonstrate process consistency and enable clinical trial blinding. Upon concentration of an IgG4 product at the 2000 L manufacturing scale, variability in product color, ranging from yellow to red, was observed. A small-scale experimental model was developed to assess the effect of processing conditions (medium composition and harvest conditions) on final bulk drug substance (BDS) color. The model was used to demonstrate that, for two distinct IgG4 products, red coloration occurred only in the presence of disulfide reduction-mediated antibody dissociation. The red color-causing component was identified as vitamin B12, in the hydroxocobalamin form, and the extent of red color was correlated with the cobalt (vitamin B12) concentration in the final pools. The intensity of redness in the final BDS was modulated by changing the concentration of vitamin B12 in the cell culture media.  相似文献   
9.
Abstract: Use of hemicellulases, including xylanases, for delignification in the paper industry has been slowed down by the lack of large-scale availability of enzymes which are active at a high pH (above 8) and a high temperature (above 60°C), conditions prevailing in many bleaching processes. During the past years, acidic or neutral hemicellulases, working at temperatures below 60°C, were used in most mill experiments. The Korsäs T6 xylanase from Bacillus stearothermophilus , which is active at a pH above 9.0 and at a temperature above 65°C, was produced on a large scale in collaboration with Gist-brocades and was employed on a full scale mill trial to produce a Total Chlorine chemical-Free (TCF) pulp from softwood. The bleaching sequence used was (OO)BQQPP. where O stands for oxygen delignification. B for the enzymatic treatment, Q for the chelating agent step and P for the hydrogen peroxide step. The enzyme bleaching step was performed during a period of 4 h at 63 ± 1°C and pH 8.7 ± 0.1. The results of the mill trial show that the TCF pulp produced had a brightness of 78% ISO and, at the same time, it preserved the same strength properties as chlorine dioxide-bleached pulp. The saving of hydrogen peroxide was 20%. The results on brightness, strength and chemical saving of this first full scale trial with T6 xylanase indicate that, after optimization, a TCF bleaching sequence including an enzymatic step with a xylanase working at a high pH and a high temperature, such as T6 xylanase, can be used to produce a high-strength bleached pulp. The advantages of a high pH and a high temperature enzymatic bleaching step are discussed.  相似文献   
10.
Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile properties of the BZ myocardium are still unknown. The goal of the current study was to quantify the in vivo contractile properties of the BZ myocardium post-MI in an ovine model treated with an injectable hydrogel. Contractile properties were determined 8 weeks following posterolateral MI by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. This was accomplished by using a combination of MRI, catheterization, finite element modeling, and numerical optimization. Results show contractility in the BZ of animals treated with hydrogel injection was significantly higher than untreated controls. End-systolic (ES) fiber stress was also greatly reduced in the BZ of treated animals. The passive stiffness of the treated infarct region was found to be greater than the untreated control. Additionally, the wall thickness in the infarct and BZ regions was found to be significantly higher in the treated animals. Treatment with hydrogel injection significantly improved BZ function and reduced LV remodeling, via altered MI properties. These changes are linked to a reduction in the ES fiber stress in the BZ myocardium surrounding the infarct. The current results imply that injectable hydrogels could be a viable therapy for maintaining LV function post-MI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号