首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  2021年   3篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
The production of self-pollinated plants could be important for improving medicinal plants secondary metabolites. In this study, 11 Thymus populations from eight species were evaluated to determine the effect of self and open pollination on agro-morphological characteristics, total phenolic content (TPC), essential oil (EO) content, and EO components. Inbreeding led to some positive effects of above mentioned traits in most of the studied populations. Total phenolic content ranged from 7.07 to 52.69 mg tannic acid equivalents (TAE) g−1 dry weight (DW) in open pollinated derived populations, while it varied from 1.2 to 55.03 mg TAE g−1 DW in self-pollinated ones. Under open and self-pollination condition, the highest EO content was obtained in T. trautvetteri (3.37 %) and T. pubescens (1.96 %), respectively. Gas chromatography-mass spectrometry (GC/MS) identified 42 compounds including thymol, carvacrol, linalool, p-cymene, γ-terpinene, terpinen-4-ol, and α-terpineol as the main compounds. In most cases, selfed plants compared to open pollinated ones, revealed higher thymol content. T. daenensis-1 showed a significant increase in thymol content (from 25.22 % to 74.3 %) due to self-pollination. Moreover, self-pollination led to emergence of some new compounds. Carvacrol methyl ether was the constituents of Thymus EO that are being reported in self-pollinated populations. Finally, inbreeding in Thymus might be suggested as a useful tool to increase genetic homogeneity for the selection of superior plants for improving secondary metabolite.  相似文献   
2.

The development of salt‐tolerant genotypes is key to a better utilization of salinized irrigated lands. Given the relatively low genetic diversity within the cultivated wheats for salt tolerance, exploring the Aegilops cylindrica's genetic diversity for salt tolerance is thus crucial to breed wheat for saline environments. In the current study, wheat genotypes were hybridized with Ae. cylindrica (a hyper salt-tolerant genotype), and amphidiploid plants were produced using embryo rescue and chromosome doubling techniques. Crossability and cytological examinations of amphidiploids and BC1 were performed before sequencing the ITS4/5 and trnE/trnF DNAs to explore the phylogenetic relationships of the amphidiploids and their parents. Finally, amphidiploids were assessed for salt tolerance. Only two common wheat cultivars (‘Chinese Spring’ and ‘Roshan’) were crossable with Ae. cylindrica. The resultant intergeneric hybrids possessed 70 chromosomes, and morphologically either were similar to the male parent in ‘Chinese Spring’ × Ae. cylindrica or tended to be intermediate between parents in ‘Roshan’ × Ae. cylindrica. The phylogenetic tree divided the genotypes into two groups, in which Clade I contained Ae. cylindrica and three amphidiploids, and Clade II consisted of female parents and one amphidiploid. Amphidiploids exhibited significantly higher tolerance to salt stress compared to the female parents (wheat cultivars) in terms of a higher dry matter, lower accumulation of Na, higher K, and higher K/Na ratio in their root and leaf tissues. Taken together, the amphiploid plants might contain valuable salt tolerance factors.

  相似文献   
3.
In the present research, variability in essential oil (EO) composition of five Dorema aucheri populations collected from natural habitats in different regions of Iran, were investigated. The EO content of populations varied from 0.28 to 0.68%. According to gas chromatography/mass spectrometry analysis, β‐caryophyllene (7.17 – 35.73%), thymol (23.45 – 29.64%), β‐gurjunene (2.58 – 5.89%), carvacrol (1.32 – 2.67%) and cuparene (1.97 – 2.98%) were the major components. Hierarchical cluster, principal component and canonical correspondence analyses classified the studied populations into three groups based on major EO components. The environmental parameters of the collected sites were also evaluated. According to the results, it might be suggested that sandy soils with high mean annual precipitation were major environmental factors influencing the amount of β‐caryophyllene, while thymol, cuparene and caryophyllen oxide increased in silty and clay soils. Finally, the population collected in high altitudes and clay soils had higher amount of β‐gurjunene.  相似文献   
4.
Total flavonoid content (TFC) and cyanidin‐3‐glucoside (Cyd‐3‐glu) of seed and seed coat extract of 16 genotypes from five species of Carthamus were studied, and their major polyphenolic compounds and antioxidant activity of the seed coat extracts were determined using HPLC analysis and DPPH assay, respectively. Additionally, fatty acids composition of the seed oil was analyzed by GC. In general, TFC and Cyd‐3‐glu content of seed coat extracts were higher than those of seed extracts. A novel breeding line with black seed coat (named A82) depicted lower TFC (3.79 mg QUE/g DW) but higher Cyd‐3‐glu (24.64 mg/g DW) compared to the white and other seed‐pigmented genotypes. DPPH radical scavenging activity showed a strong association with Cyd‐3‐glu content (r = 0.84), but no correlation with TFC (r = ?0.32). HPLC analysis of seed coat extracts revealed that four compounds were dominant constituents including rutin (7.23 – 117.95 mg/100 g DW), apigenin (4.37 – 64.88 mg/100 g DW), quercetin (3.09 – 14.10 mg/100 g DW), and ferulic acid (4.49 – 30.41 mg/100 g DW). Interestingly, the genotype A82 with an appropriate polyunsaturated/saturated fatty acids index (5.46%) and a moderate linoleic fatty acid content (64.70%) had higher nutritional and pharmaceutical value than all the other genotypes.  相似文献   
5.

In recent years, the application of arbuscular mycorrhizal fungi (AMF) has been considered to be an important strategy for improving crop yield and quality. In the present study, a factorial experiment based on a complete randomized design with two factors was performed to investigate the effect of AMF and water stress on the essential oil (EO) composition, antioxidant activity, and physiological and morphological characteristics of rose-scented geranium (Pelargonium graveolens L.). The factors included AMF inoculation (Rhizophagus intraradices, Funneliformis mosseae, and a mixture of both species) and irrigation levels [well-watered (WW), moderate drought stress (MDS), and severe drought stress (SDS)]. The main EO constituents were citronellol (31–37%) and geraniol (9–14%) in all treatments. Under water-stress conditions, some constituents increased, such as geraniol and geranyl formate, whereas others decreased, such as linalool, menthone and rose oxide. Overall, the highest amount of citronellol (37.3%) and geraniol (14.8%) was obtained in the plants inoculated with F. mosseae and R. intraradices under WW and MDS conditions, respectively. Antioxidant activity, total flavonoids, and phenolics were increased because of AMF inoculation, whereas a different trend was observed for the phenolic and flavonoid contents under water-stress conditions. Furthermore, water deficit elevated the amount of soluble carbohydrates as well as the proline content, whereas the amount of proline was lower in inoculated plants than in non-inoculated ones. All the growth parameters were improved in the AMF-inoculated plants compared to non-inoculated ones under different irrigation regimes. Drought conditions decreased the photosynthetic pigments and efficiency, whereas AMF plants ameliorated the adverse effect of drought conditions. In general, mycorrhizal inoculation resulted in an improvement in the growth parameters as well as the phytochemical and physiological characteristics of rose-scented geranium.

  相似文献   
6.
The effect of different NaCl concentrations (control, 2, 4 and 6 dS/m) and three harvesting times in different seasons including spring (9 April), summer (5 July), and fall (23 September) was evaluated on essential oil (EO) yield, composition, phenolic, flavonoid content, and antioxidant activity of myrtle. Essential oil yield ranged from 0.2% in control and fall to 1.6% in moderate salinity (4 dS/m) and spring season. The main constituents obtained from gas chromatography/mass spectrometry analysis were α‐pinene, 1,8‐cineole, limonene, linalool, α‐terpineol, and linalyl acetate in which α‐pinene ranged from 11.70% in moderate and fall to 30.99% in low salinity (2 dS/m) and spring, while 1,8‐cineole varied from 7.42% in high salinity (6 dS/m) and summer to 15.45% in low salinity and spring, respectively. Salt stress also resulted in an increase in total phenolic, flavonoid content, and antioxidant activity. The highest antioxidant activity based on DPPH radical scavenging activity, reducing power (FTC) and β‐carotene/linoleic acid model systems was found in plants harvested in spring and summer in high stress condition. The lowest IC50 values obtained in 6 dS/m in spring (375.23 μg/ml) followed by summer (249.41 μg/ml) and fall (618.38 μg/ml). Eight major phenolic and flavonoid compounds were determined in three harvesting times using high performance liquid chromatography analysis. In overall, late harvesting time of myrtle in fall can lead to reduce the most of major EO components, while it can improve the amount of phenolic acids.  相似文献   
7.
Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity of 57 Achillea accessions belonging to five species, A. millefolium, A. filipendulina, A. tenuifolia, A. santolina and A. biebersteinii. Nine AFLP primer combinations were used, which produced 301 polymorphic bands. In most species, a high level of genetic variation was detected among the genotypes. The Jaccard's similarity indices (J), based on AFLP profiles, were subjected to UPGMA cluster analysis. Application of Mantel's test for cophenetic correlation to the cluster analysis indicated the high fitness of the accessions to a group (r = 0.918). The dendrogram generated revealed five major groups corresponding to five species. The principle coordinate analysis (PCoA) data confirmed the results of the clustering. Among the species, A. teunifolia and A. santolina showed the greatest and the least genetic diversity, respectively. A. filipendulina accessions were acquired primarily from the same ecological regions of western Iran. Accessions belonging to A. biebersteinii originated from the Isfahan province and were separated from other species at the root of the dendrogram. The results of the clustering method, based on AFLP markers, corresponded closely with the geographical origins of the genotypes. The results of the present study could contribute to a better understanding and management of conservation and exploitation of the Achillea germplasm.  相似文献   
8.
Inheritance of plant traits mainly depends upon nuclear genes, cytoplasmic factors and their interactions. In the present study, 32 alloplasmic lines accompanied by a euplasmic parental line (control) were evaluated using molecular (chloroplast microsatellite) and morpho-physiological traits during 2010–2011 and 2011–2012. The results of combined analysis of variance showed the significant effect of growing seasons on most of the studied traits as well as the significant effect of cytoplasm on plant height, leaf net CO2 assimilation rate and grain yield per plant. Results of cluster analysis divided the six plasmons based on their phenotypic effects into three groups: (1) R and Sv type, D (Aegilops typica and Ae. ventricosa) and D2 type, as well as B-type plasmon (euplasmic line); (2) a single plasmon of M type and three plasmons of B type; (3) all other B-type and a single D-type plasmon (Aegilops cylindrica). Molecular analysis showed that 20 primer pairs out of 26 chloroplastic microsatellite markers (cpSSR) produced polymorphic bands in the alloplasmic lines. A total of 50 alleles were identified with an average of 2.5 alleles per locus. In this study, polymorphism information content (PIC) ranged from 0.05 (WCt17 primer) to 0.49 (WCt9 primer). Cluster analysis of molecular data revealed that the alloplasmic lines belong to two major clusters, in which differentiation of cytoplasmic types belonging to the genus Triticum and Aegilops has been evident. Likewise, analysis of molecular variance showed significant differences between two studied groups (F ST = 0.67, P < 0.001). Overall, our findings indicated that the cpSSR markers can be valuable resources of polymorphic markers for the analysis of cytoplasm of Triticeae species, with the potential for clear differentiation in close species and genera of this tribe.  相似文献   
9.
Thymus is one of the most important genera of the Lamiaceae family. This work was performed to assess inter and intra species variation, which is an indispensable prerequisite for the selection and the exploitation of the germplasm, using yield, secondary metabolites, and ploidy level criteria. Nineteen Iranian populations belonging to 11 Thymus species which includes T. vulgaris were used in this study. The results of cytological observations on the 19 populations revealed the three root-tip chromosome numbers of 2n=2x=30, 2n=4x=56 or 60 (diploid and tetraploid). This study also presents the results of a two-year field experiment that evaluates the agronomic and morphology of the 19 populations of Thymus spp. Cluster analysis grouped the populations into six groups and explained the relationships among ploidy levels, morphological traits, and essential oils (EOs). In general, diploid species belonged to the thymol chemotype, whilst carvacrol chemotype consistently dependent on the gene-dosage effect. Thymus migricus, T. daenensis-2, T. serpyllum, and T. trautvetteri populations with diverse thymol background were the best selection as the parents to improve thymol in a breeding program. Moreover, dry and fresh weight criteria can be used to improve EO content in thyme. Achieving this goal would be expected by crossing T. migricus and T. daenensis-2. Finally, providing relevant information on the ploidy level of Thymus species, with emphasis on morphology and EO components variations, may be recommended for the selection of populations or species to improve bioactive components as well as morphological traits in future breeding programs.  相似文献   
10.
A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end‐products (AGE) in vitro. Apachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC50 = 365.5 μg/ml) presented strong anti‐AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order of Apachycephalla > Anobilis > Afilipendulina > Asantolina > Aaucheri > Amillefolium. Most extracts exhibited marked anti‐AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though Apachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attributed to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号