首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   8篇
  2015年   10篇
  2014年   14篇
  2013年   13篇
  2012年   16篇
  2011年   17篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1995年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有182条查询结果,搜索用时 187 毫秒
1.
2.
3.
The ref(2)P gene of Drosophila melanogaster interferes with sigma rhabdovirus multiplication. This gene is highly variable, and the different alleles are considered permissive or restrictive according to their effects on virus replication. In all cases, the mechanisms involve intracellular interactions between the sigma virus and Ref(2)P proteins. We showed that the N-terminal domain of the Ref(2)P protein was required for its activity in vivo. The protein was inactive in the null p(od)2 mutant when its first 82 amino acids were deleted. The p delta n gene was constructed so that the first 91 amino acids coded for by the restrictive alleles could be expressed in vivo. It was active in a transformed line. This sequence was sufficient to impart a restrictive phenotype to an adult D. melanogaster fly after it was injected with the virus. However, the truncated protein expressed by p delta n did not have an effect on the hereditary transmission of the sigma virus to the offspring of the infected flies, even though it contained the restriction site. The native Ref(2)P protein has been previously shown to have conformation-dependent epitopes common with some of those of the viral N protein. We demonstrated the following. (i) These epitopes were found in a domain of the Ref(2)P protein distinct from the site involved in restriction. (ii) They were modified in the N protein of the haP7 sigma virus mutant selected as being adapted to the restrictive alleles of the ref(2)P gene; only one mutation in the N gene, leading to an amino acid substitution, distinguished the haP7 mutant from the original virus. (iii) The virus strains partially or totally adapted to the effects of the full restrictive protein expressed by pp were always found to multiply to a lesser extent in the presence of the protein expressed by p delta n. These data suggest that two distinct domains of the Ref(2)P protein are involved in the control of sigma virus multiplication.  相似文献   
4.
A. Petitjean  F. Hilger    K. Tatchell 《Genetics》1990,124(4):797-806
The CDC25 gene from Saccharomyces cerevisiae is an essential component of the RAS-adenylate cyclase pathway. Genetic and biochemical evidence has led to the proposal that the gene product may act upstream of RAS, possibly as a guanine nucleotide exchange factor. We report here the cloning, sequencing and characterization of four mutations in the CDC25 gene. All four are missense mutations which reside within the carboxy-terminal quarter of the single open reading frame found within the gene. Three of the four are missense mutations in the same amino acid codon. A search of protein data bases reveals that the carboxy terminus of the putative CDC25 gene product is similar to that of LTE1, a gene required for growth at low temperature and SCD25, a suppressor of cdc25. Taken together these data indicate that the carboxy terminus of CDC25 plays a critical role in the function of the CDC25 gene product and that other proteins, such as LTE1 or SCD25, may have related activities.  相似文献   
5.
6.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein–protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.Francisella tularensis is responsible for the disease tularamia in a large number of animal species. This highly infectious bacterial pathogen can be transmitted to humans in numerous ways (1, 2, 3), including direct contact with sick animals, inhalation, ingestion of contaminated water or food, or by bites from ticks, mosquitoes, or flies. Four different subspecies (subsp.) of F. tularensis that differ in virulence and geographic distribution exist, designated subsp. tularensis (type A), subsp. holarctica (type B), subsp. Novicida, and subsp. mediasiatica, respectively. F. tularensis subsp. tularensis is the most virulent subspecies causing a severe disease in humans, whereas F. tularensis subsp. holarctica causes a similar disease but of less severity (4). Because of its high infectivity and lethality, F. tularensis is considered a potential bioterrorism agent (5).F. tularensis is able to survive and to replicate in the cytoplasm of a variety of infected cells, including macrophages. To resist this stressful environment, the bacterium must have developed stress resistance mechanisms, most of which are not yet well characterized. We recently reported the identification of a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis (6). This locus was designated moxR because the first gene FTL_0200, encodes a protein belonging to the AAA+ ATPase of the MoxR family ((7) and references therein). The data obtained in that first study had led us to suggest that the F. tularensis MoxR-like protein might constitute, in combination with other proteins of the locus, a chaperone complex contributing to F. tularensis pathogenesis.To further validate this hypothesis and expand our initial observations, we here decided to perform tandem affinity purification (TAP),1 using a dual affinity tag approach coupled to mass spectroscopy analyses (8), to identify proteins interacting in vivo with three proteins encoded by the proximal portion of the moxR locus. For this, we chose as baits: the MoxR-like protein (FTL_0200) and two proteins bearing distinct motifs possibly involved in protein–protein interactions, FTL_0201 (Von Willebrand Factor Type A domain, or VWA) and FTL_0205 (tetratrichopeptide repeat or TPR). The three proteins were designated here for simplification, MoxR, VWA1, and TPR1; and the corresponding genes moxR, vwa1, and tpr1, respectively.VWA domains are present in all three kingdoms of life. They consist of a β-sheet sandwiched by multiple α helices. Frequently, VWA domain-containing proteins function in multiprotein complexes (9). TPR typically contain 34 amino acids. Many three-dimensional structures of TPR domains have been solved, revealing amphipathic helical structures (10). TPR-containing proteins are also found in all kingdoms of life. They can be involved in a variety of functions, and generally mediate protein–protein interactions. In the past few years, several TPR-related proteins have been shown to be involved in virulence mechanisms in pathogenic bacteria ((11) and references therein).Our proteomic approach allowed us to identify a series of protein interactants for each of the three moxR-encoded proteins. Remarkably, the protein TPR1 interacted with all the subunits of the pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (OGDH) complexes. Furthermore, inactivation of tpr1 also severely impaired the activities of these two enzymes. Inactivation of tpr1 affected bacterial resistance to several stresses (and in particular oxidative stress), intramacrophagic bacterial multiplication and bacterial virulence in the mouse model. Functional implications and possible relationship between bacterial metabolism, stress defense, and bacterial virulence are discussed.  相似文献   
7.
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.  相似文献   
8.
Plant and Soil - A field experiment was conducted to evaluate the effects of alley cropping systems on microbial activity and soil organic matter (SOM) pools. We hypothesized that enzyme activity...  相似文献   
9.
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.  相似文献   
10.
We have developed a novel in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a coevolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 h to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal-virulence and unequal-virulence genotype pairs, the frequency of superinfection in most cases was the same regardless of which genotype was used in the primary exposure. The ability to replicate in the context of superinfection also did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural vertebrate host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号