首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   21篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   8篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   8篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
1.
2.
3.
Synopsis Laboratory experiments examined the foraging performances of a dietary generalist, bluegill,Lepomis macrochirus, and a dietary specialist, golden shiner,Notemigonus crysoleucas, as they fed from devices simulating four foraging sites (bottom substrate, water column, submerged macrophytes, and water surface). Fishes foraged in monospecific and mixed-species groups of two and four individuals. For monospecific groups, foraging rates of bluegills did not differ among the four sites, but golden shiners had significantly higher rates on bottom and midwater sites than on plant and surface sites. The size of monospecific groups did not affect foraging rates of either species. In mixed-species trials, bluegills removed more food items than golden shiners from plant and surface sites in two- and four-fish groups and from bottom sites in two-fish groups. Bluegills' foraging performances improved with experience, golden shiners' performances did not. Experimental results are discussed with respect to interactions between bluegills and golden shiners in natural assemblages.  相似文献   
4.
Intrachromosomal recombination in plants.   总被引:15,自引:2,他引:13       下载免费PDF全文
Molecular evidence for intrachromosomal recombination between closely linked DNA repeats within the plant genome is presented. The non-overlapping complementary deletion derivatives of the selectable neomycin phosphotransferase gene (nptII), when intact conferring kanamycin resistance, were inserted into the genome of Nicotiana tabacum. The functional marker gene was restored with frequencies between 10(-4) and 10(-6) per proliferating cell clone. Prolonged tissue culture prior to kanamycin selection did not increase the number of recombinant kanamycin-resistant (KanR) cell clones. DNA analysis of KanR clones derived from cells carrying multiple tandem recombination units suggested that these units have a tendency to undergo concerted recombination. Recovery and analysis of kanamycin-sensitive seedlings with patches of KanR cells provided direct evidence for mitotic recombination in plant tissue.  相似文献   
5.
The precision of extrachromosomal homologous recombination and gene targeting in plant cells was investigated. Recombination was directed to introns of selectable marker genes where potential changes could persist without affecting the function and therefore the selectability of the genes. Approximately 9 kb of crossover regions was rescued and sequenced. Changes were detected at a frequency below one point mutation per 1000 bp, indicating that extrachromosomal recombination and gene targeting both appear to occur with high fidelity.  相似文献   
6.
Direct gene transfer to plants   总被引:18,自引:2,他引:16       下载免费PDF全文
Evidence for direct, gene-mediated stable genetic transformation of plant cells of Nicotiana tabacum is presented. A selectable hybrid gene comprising the protein coding region of the Tn5 aminoglycoside phosphotransferase type II gene under control of cauliflower mosaic virus gene VI expression signals was introduced into plant protoplasts as part of an Escherichia coli plasmid. The gene was stably integrated into plant genomic DNA and constitutively expressed in selected, drug resistant, protoplast-derived cell clones. The mode of integration of the foreign gene into the plant genome resembled that observed for DNA transfection of mammalian cells. Plants regenerated from transformed cell lines were phenotypically normal and fertile, and they maintained and expressed the foreign gene throughout the development of vegetative and generative organs. Microspores, grown in anther culture, developed into resistant and sensitive haploid plantlets. Genetic crossing analysis of one of the transformed plants revealed the presence of one dominant trait for kanamycin resistance segregating in a Mendelian fashion in the F1 generation.  相似文献   
7.
Serine: glyoxylate aminotransferase (EC 2.6.1.45) from rye seedlings catalysed transamination between L-serine and glyoxylate according to the Ping Pong Bi Bi mechanism with double substrate inhibition. As judged from the Km values, L-serine, L-alanine, and L-asparagine served as substrates for the enzyme with glyoxylate, whereas L-alanine and L-asparagine underwent transamination with hydroxypyruvate as acceptor. Pyridoxal phosphate (PLP) seems to be rather loosely bound to the enzyme protein. Aminooxyacetate and D-serine were found to be pure competitive inhibitors of the enzyme, with Ki values of 0.12 microM and 1.6 mM, respectively. Among the PLP inhibitors isonicotinic acid hydrazide and hydroxylamine were far less effective than aminooxyacetate (20% and 70% inhibition at 0.1 mM concentration, respectively). Inhibition by the SH group inhibitors at 1 mM concentration did not exceed 50%. L-Serine distinctly diminished the inhibitory effect of this type inhibitors. Preincubation of the enzyme with glyoxylate distinctly diminished transamination. Glyoxylate limited the inhibitory action of formaldehyde probably by competing for the reactive groups present in the active centre.  相似文献   
8.
Genetic approaches to understanding the role of epigenetic regulation of gene expression in plants and its mechanisms have revealed several new components. Rapidly accumulating information from other eukaryotes provides complementary knowledge with important implications for plant research. Comparison of epigenetic events across species is proving critical for defining the mechanisms and functions of epigenetic modification, including those specific to plants.  相似文献   
9.
Gene targeting in Arabidopsis   总被引:3,自引:0,他引:3  
Precise modification by gene targeting (GT) provides an important tool for studies of gene function in vivo. Although routine with many organisms, only isolated examples of GT events have been reported for flowering plants. These were at low frequencies precluding reliable estimation of targeting efficiency and evaluation of GT mechanisms. Here we present an unambiguous and straightforward system for detection of GT events in Arabidopsis using an endogenous nuclear gene encoding protoporphyrinogen oxidase (PPO), involved in chlorophyll and heme syntheses. Inhibition of PPO by the herbicide Butafenacil results in rapid plant death. However, the combination of two particular mutations renders PPO highly resistant to Butafenacil. We exploited this feature for selection of GT events by introducing the mutations into the PPO gene by homologous recombination. We have estimated the basal GT frequency to be 2.4 x 10(-3). Approximately one-third of events were true GT (TGT) leading to the anticipated modification of the chromosomal PPO copy. The remaining events could be classified as ectopic GT (EGT) arising by modification of vector DNA by the chromosomal template and its random integration into the Arabidopsis genome. Thus the TGT frequency in our experimental setup is 0.72 x 10(-3). In view of the high efficiency of Arabidopsis transformation, GT experiments of a reasonable size followed by a PCR screen for GT events should also allow for modification of non-selectable targets. Moreover, the system presented here should contribute significantly to future improvement of GT technology in plants.  相似文献   
10.
The Arabidopsis genome contains 20 genes encoding mitogen-activated protein kinases (MAPKs), which drastically outnumbers genes for their negative regulators, MAP kinase phosphatases (MKPs) (five at most). This contrasts sharply with genomes of other eukaryotes where the number of MAPKs and MKPs is approximately equal. MKPs may therefore play an important role in signal integration in plants, through concerted regulation of several MAPKs. Our previous studies identified Arabidopsis MKP1 and showed that its deficiency in the mkp1 mutant results in plant hypersensitivity to genotoxic stress. Here, we identify a set of MAPKs that interact with MKP1, and show that the activity level of one of these, MPK6, is regulated by MKP1 in vivo. Moreover, using expression profiling, we identified a specific group of genes that probably represent targets of MKP1 regulation. Surprisingly, the identity of these genes and interacting MAPKs suggested involvement of MKP1 in salt stress responses. Indeed, mkp1 plants have increased resistance to salinity. Thus MKP1 apparently plays a pivotal role in the integration and fine-tuning of plant responses to various environmental challenges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号