首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1985年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有29条查询结果,搜索用时 294 毫秒
1.
Several laboratories have reported on the apoptotic potentials of human prostate cancer (PC) cell lines in response to crosslinking of Fas (CD95/APO-1) with agonistic anti-Fas antibodies. We have re-evaluated the apoptotic potentials of seven human PC cell lines using the natural Fas ligand (FasL) in place of agonistic antibody. First, PC cell lines were tested in a standard cytotoxicity assay with a transfected cell line that stably expresses human FasL. Next, we developed an adenoviral expression system employing 293 cells that stably express crmA, a poxvirus inhibitor of apoptosis, to analyze the effects of FasL when expressed internally by the PC cell lines. Our data suggest that the apoptotic potentials of these cell lines were greatly underestimated in previous studies utilizing agonistic anti-Fas antibodies. Lastly, adenoviral-mediated expression of FasL prevented growth and induced regression of two human PC cell lines in immunodeficient mice. These preliminary in vivo results suggest a potential use for adenovirus encoding FasL as a gene therapy for PC.  相似文献   
2.
Expression of gp91-phox in Chinese hamster ovary (CHO91) cells is correlated with the presence of a voltage-gated H(+) conductance. As one component of NADPH oxidase in neutrophils, gp91-phox is responsible for catalyzing the production of superoxide (O(2).(2)). Suspensions of CHO91 cells exhibit arachidonate-activatable H(+) fluxes (Henderson, L.M., G. Banting, and J.B. Chappell. 1995. J. Biol. Chem. 270:5909-5916) and we now characterize the electrical properties of the pathway. Voltage-gated currents were recorded from CHO91 cells using the whole-cell configuration of the patch-clamp technique under conditions designed to exclude a contribution from ions other than H(+). As in other voltage-gated proton currents (Byerly, L., R. Meech, and W. Moody. 1984. J. Physiol. 351:199-216; DeCoursey, T.E., and V.V. Cherny. 1993. Biophys. J. 65:1590-1598), a lowered external pH (pH(o)) shifted activation to more positive voltages and caused the tail current reversal potential to shift in the manner predicted by the Nernst equation. The outward currents were also reversibly inhibited by 200 microM zinc. Voltage-gated currents were not present immediately upon perforating the cell membrane, but showed a progressive increase over the first 10-20 min of the recording period. This time course was consistent with a gradual shift in activation to more negative potentials as the pipette solution, pH 6.5, equilibrated with the cell contents (reported by Lucifer yellow included in the patch pipette). Use of the pH-sensitive dye 2'7' bis-(2-carboxyethyl)-5(and 6) carboxyfluorescein (BCECF) suggested that the final intracellular pH (pH(i)) was approximately 6.9, as though pH(i) was largely determined by endogenous cellular regulation. Arachidonate (20 microM) increased the amplitude of the currents by shifting activation to more negative voltages and by increasing the maximally available conductance. Changes in external Cl(-) concentration had no effect on either the time scale or the appearance of the currents. Examination of whole cell currents from cells expressing mutated versions of gp91-phox suggest that: (a) voltage as well as arachidonate sensitivity was retained by cells with only the NH(2)-terminal 230 amino acids, (b) histidine residues at positions 111, 115, and 119 on a putative membrane-spanning helical region of the protein contribute to H(+) permeation, (c) histidine residues at positions 111 and 119 may contribute to voltage gating, (d) the histidine residue at position 115 is functionally important for H(+) selectivity. Mechanisms of H(+) permeation through gp91-phox include the possible protonation/deprotonation of His-115 as it is exposed alternatively to the interior and exterior faces of the cell membrane (see Starace, D.M., E. Stefani, and F. Bezanilla. 1997. Neuron. 19:1319-1327) and the transfer of protons across an "H-X-X-X-H-X-X-X-H" motif lining a conducting pore.  相似文献   
3.
4.
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   
5.
The bifunctional -amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of -amylases expressed during germination of barley and encoded by the amy1 gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5-flanking region (1033 bp, 1033-asi promoter) and the 3-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   
6.
7.
Solvent relaxation in lipid bilayers with dansyl probes   总被引:1,自引:0,他引:1  
The solvent relaxation properties of the dansyl group attached to two lipids (dansylphosphatidylethanolamine and dansylphosphatidylserine), a fatty acid (dansylundecanoic acid), and two drugs (dansylbenzocaine and dansylpropranolol) were compared in a variety of different lipid systems. Several methods for characterising solvent relaxation were compared in detail for dansylpropranolol in bilayer vesicles of egg phosphatidylcholine. It was shown that the relaxation process is non-monoexponential; nevertheless, for comparative purposes, a model was adopted in which the lifetime associated with the negative exponent in a two exponential decay analysis, obtained at a particular energy on the red edge of emission, was taken as an approximation to a 'solvent relaxation' rate. A negative exponent, indicative of solvent relaxation processes, occurring in the nanosecond time-scale, was found only for dansylpropranolol, dansylPE and dansylundecanoic acid. On addition of the spin probe, 5-doxylstearate, the negative exponent was unaffected in liquid-crystalline phase lipids but was no longer found in gel-phase lipid in the case of dansylpropranolol, while for dansylPE the relaxation time was reduced. On the basis of these types of measurement it was possible to distinguish between different lipid environments using the same probe or between different dansyl environments of the different probes in the same lipid in cases where this would have been difficult or impossible solely on the basis of steady-state or fluorescence lifetime measurements.  相似文献   
8.
9.
10.
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号