首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   82篇
  2023年   2篇
  2022年   1篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   23篇
  2017年   3篇
  2016年   13篇
  2015年   35篇
  2014年   52篇
  2013年   83篇
  2012年   93篇
  2011年   68篇
  2010年   49篇
  2009年   59篇
  2008年   86篇
  2007年   91篇
  2006年   70篇
  2005年   77篇
  2004年   56篇
  2003年   66篇
  2002年   54篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1073条查询结果,搜索用时 109 毫秒
1.
2.
We demonstrate a method for the synthesis of multicomponent nanostructures consisting of CdS and CdSe with rod and tetrapod morphologies. A seeded synthesis strategy is used in which spherical seeds of CdSe are prepared first using a hot-injection technique. By controlling the crystal structure of the seed to be either wurtzite or zinc-blende, the subsequent hot-injection growth of CdS off of the seed results in either a rod-shaped or tetrapod-shaped nanocrystal, respectively. The phase and morphology of the synthesized nanocrystals are confirmed using X-ray diffraction and transmission electron microscopy, demonstrating that the nanocrystals are phase-pure and have a consistent morphology. The extinction coefficient and quantum yield of the synthesized nanocrystals are calculated using UV-Vis absorption spectroscopy and photoluminescence spectroscopy. The rods and tetrapods exhibit extinction coefficients and quantum yields that are higher than that of the bare seeds. This synthesis demonstrates the precise arrangement of materials that can be achieved at the nanoscale by using a seeded synthetic approach.  相似文献   
3.
Transposable elements are a major source of genetic change, including the creation of novel genes, the alteration of gene expression in development, and the genesis of major genomic rearrangements. They are ubiquitous among contemporary organisms and probably as old as life itself. The long coexistence of transposable elements in the genome would be expected to be accompanied by host-element coevolution. Indeed, the important role of host factors in the regulation of transposable elements has been illuminated by recent studies of several systems in Drosophila. These include host factors that regulate the P element, a host mutation that renders the genome permissive for gypsy mobilization and infection, and newly induced mutations that affect the expression of transposon insertion mutations. The finding of a type of hybrid dysgenesis in D. virilis, in which multiple unrelated transposable elements are mobilized simultaneously, may also be relevant to host-factor regulation of transposition.  相似文献   
4.
He-T sequences are a complex repetitive family of DNA sequences in Drosophila that are associated with telomeric regions, pericentromeric heterochromatin, and the Y chromosome. A component of the He-T family containing open reading frames (ORFs) is described. These ORF-containing elements within the He-T family are designated T-elements, since hybridization in situ with the polytene salivary gland chromosomes results in detectable signal exclusively at the chromosome tips. One T-element that has been sequenced includes ORFs of 1,428 and 1,614 bp. The ORFs are overlapping but one nucleotide out of frame with respect to each other. The longer ORF contains cysteine-histidine motifs strongly resembling nucleic acid binding domains of gag-like proteins, and the overall organization of the T-element ORFs is reminiscent of LINE elements. The T-elements are transcribed and appear to be conserved in Drosophila species related to D. melanogaster. The results suggest that T-elements may play a role in the structure and/or function of telomeres.by W. Hennig  相似文献   
5.
Effector-induced allosteric transitions in cytochrome P450 3A4 (CYP3A4) were investigated by luminescence resonance energy transfer (LRET) between two SH-reactive probes attached to various pairs of distantly located cysteine residues, namely the double-cysteine mutants CYP3A4(C64/C468), CYP3A4(C377/C468) and CYP3A4(C64/C121). Successive equimolar labeling of these proteins with the phosphorescent probe erythrosine iodoacetamide (donor) and the near-infrared fluorophore DY-731 maleimide (acceptor) allowed us to establish donor/acceptor pairs sensitive to conformational motions. The interactions of all three double-labeled mutants with the allosteric activators α-naphthoflavone and testosterone resulted in an increase in the distance between the probes. A similar effect was elicited by cholesterol. These changes in distance vary from 1.3 to 8.5 Å, depending on the position of the donor/acceptor pair and the nature of the effector. In contrast, the changes in the interprobe distance caused by such substrates as bromocriptine or 1-pyrenebutanol were only marginal. Our results provide a decisive support to the paradigm of allosteric modulation of CYP3A4 and indicate that the conformational transition caused by allosteric effectors increases the spatial separation between the beta-domain of the enzyme (bearing residues Cys64 and Cys377) and the alpha-domain, where Cys121 and Cys468 are located.  相似文献   
6.
7.
Small proteins called viral protein genome‐linked (VPg), attached to the 5′‐end of the viral RNA genome are found as common structure in the large family of picornaviruses. The replication of these viruses is primed by this VPg protein linked to a single uridylyl residue. We report a general procedure to obtain such nucleoproteins employing a pre‐uridylylated tyrosine building block in an on‐line solid phase‐based approach. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
8.
9.
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO.  相似文献   
10.
Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号