首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   6篇
  2021年   1篇
  2018年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2004年   1篇
  1998年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
中亚热带不同母质和森林类型土壤生态酶化学计量特征   总被引:6,自引:0,他引:6  
土壤生态酶化学计量比作为衡量土壤微生物能量和养分资源限制状况的重要指标,是当前生态学领域研究的热点之一,然而关于土壤母质和森林类型在调控土壤生态酶化学计量比中所扮演的角色及作用机制尚不明确。分别以砂岩和花岗岩发育的米槠林和杉木林土壤为研究对象,通过测定土壤物理化学性质、微生物量碳、氮和磷及土壤酶活性,探讨不同母岩发育的米槠林和杉木林土壤生态酶化学计量特征。结果显示,花岗岩发育的土壤酸性磷酸酶活性(AP)显著高于砂岩发育的土壤,βG:AP和NAG:AP的值显著低于砂岩发育的土壤。其中,花岗岩发育的米槠林土壤βG:AP和NAG:AP的值都显著高于杉木林,砂岩发育的土壤βG:AP和NAG:AP的值在两个林分间呈相反的结果。结果表明土壤生态酶化学计量比能够反映不同森林土壤之间磷养分限制强度,花岗岩比砂岩土壤受磷养分限制更严重。相关分析表明,土壤酶活性及生态酶化学计量比与土壤生物因子和非生物因子密切相关,而冗余分析发现土壤pH、总磷(TP)和微生物量碳(MBC)分别解释土壤酶活性和生态酶化学计量比变异的56.9%、27.9%和12.3%。未来森林经营及管理应考虑土壤母质和森林类型差异对区域森林土壤养分循环的影响。  相似文献   
3.
模拟增温对中亚热带杉木人工林土壤磷有效性的影响   总被引:1,自引:0,他引:1  
气候变暖改变与土壤磷循环相关的生物地球化学过程,对陆地生态系统磷循环产生直接或间接影响。为研究亚热带地区杉木人工林土壤磷有效性对增温的响应,开展了模拟增温实验。实验设置对照组及增温组(5℃),经过1.5a的短期增温,对杉木人工林的土壤全磷、有机磷、微生物量磷、有效磷、酸性磷酸酶活性及相关土壤理化性质进行测定,结果表明:增温处理下,土壤酸性磷酸酶活性提高约1.5倍,土壤全磷、微生物量磷以及有机磷含量分别减少了6%、34%和12%,土壤有效磷含量增加25%。可见,短期增温通过提高土壤磷酸酶活性进而促进土壤有机磷矿化和降低土壤微生物固磷量,从而增加土壤磷有效性,但是增温导致潜在可利用的土壤微生物量磷大幅度的降低,将有可能加剧亚热带杉木人工林土壤磷限制。  相似文献   
4.
塔里木板块古城4井中奥陶统一间房组的海进序列   总被引:1,自引:0,他引:1  
塔里木板块中央隆起区奥陶系碳酸盐岩台地东南缘的古城4井钻遇约130m厚的中奥陶统达瑞威尔阶一间房组灰岩。该组下部为表附藻-肾形钙藻-瓶筐石礁丘群落,间夹有薄层砂屑滩,海水深度推测位于10-30m的潮下带至正常波浪带之间;上部为中-低能带藻屑砂屑组合,灰泥含量增高,大致指示正常波浪带之下到最大浪基面之间30-60m的深度。古城4井与中央隆起区西北部巴楚露头区同期沉积均显示海水逐渐加深的过程,到上奥陶统桑比阶吐木休克组沉积期两地都达到了奥陶系的最大海泛面。  相似文献   
5.
To improve lake water quality, two experimental water transfers were conducted in winter–spring 2002 and summer–fall 2003 in Lake Taihu, a large shallow lake in China. Both observed data and estimated nutrient concentration with the elimination of effect from natural factors were used in this research to assess the spatial and temporal variations of water quality improvement induced by the two transfers. Clear improvement of water quality associated with deduction of TN, TP, and chlorophyll a (Chl-a) concentration was observed in many areas of the lake during the two water transfers. The over all reduction in TP concentration was notable in Southwest Zone, Centre Zone, and Dongtaihu Bay during the 2002 transfer, and was more pronounced in Meiliang Bay and Southwest Zone during the 2003 transfer period. However, the reduction in TN and Chl-a concentration was relatively weak. Results indicate a less impressive improvement of water quality from water transfer in large lakes than in small ones as the effectiveness of water transfer in large lakes is generally limited by large size, complex boundaries, and the difficulty of finding proper water source to be transferred. The comparison of observed and estimated water transfer effectiveness suggests a greater improvement of water quality derived from water transfer than appeared from the observation.  相似文献   
6.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   
7.
A natural wetland of about 12 000 m2 along the east coast of Lake Taihu was separated into five subzones with different macrophyte structures to investigate their nutrient removal dynamics. Wastewater was continuously pumped into the wetland from July 2008 to June 2009 at an average rate of 22 m3/h. Neighboring natural wetland with high density of macrophyte was chosen as a comparison site. The removal of TN, TDN, TP, and TDP in the experimental wetlands as a whole was about 79.3, 54.5, 4.5, and 3.4 kg, respectively. The decrease of nitrogen concentration was more pronounced in winter (January–March) 2009, representing a respective reduction of 46.4%, 48.0%, and 47.9% in TN, TDN, and NH4–N concentration. Results reveal a higher nutrient removal potential in wetland dominated by Typha orientalis Presl, Zizania latifolia Turcz, and Hemarthria sibirica under high nutrient load. However, areas dominated by Zizania latifolia Turcz, Nelumbo nucifera Gaertn, and Ceratophyllum demersum L. had better purification performance when the above-water-surface macrophytes were harvested frequently. Dissolved oxygen, pH, and oxidation–reduction potential decreased with the increase of the percentage of Zizania latifolia Turcz-dominated macrophytes. High nutrient concentration in the comparison site and net increase of NH4–N in Z1 indicate the possibility of water re-pollution by intense macrophyte decomposition. Furthermore, results suggest that harvesting macrophytes has potential ability in nitrogen, especially ammonium nitrogen removal, and hence could be considered in wetland construction for lake restoration.  相似文献   
8.
Difructose anhydride III (DFA III), the smallest cyclic disaccharide, consists of two fructose residues. DFA III is a hydrolysate of inulin and is rarely found in nature. Industrial interest in DFA III as a low-calorie sugar substitute is increasing. The present review describes the properties and physiological functions of DFA III as well as its commercial importance. Focus is also given on the biological production of DFA III from inulin, which contains enzyme resources, inulase II properties, and the capacity for mass DFA III production. Inulase II as an industrial enzyme and its molecular evolution are discussed as well. The aim is to better understand commercial-scale DFA III production as a food product.  相似文献   
9.
稻鸭共作对稻田营养生态及稻米品质的影响   总被引:66,自引:11,他引:55  
通过稻、鸭之间的共生互作,共生期不施用任何农药和化肥,进行优质无公害水稻生产。结果表明,稻鸭共作的除草效果达到99.4%以上,病虫害基数明显降低;水体营养物质和溶解氧增大;土壤速效养分有一定提高,但成熟后土壤速效P、速效K较基础肥力有一定降低;植株N、P、K吸收量增加;产量明显提高,构成因素中成穗率、实粒数和结实率增加;稻米的加工品质、外观品质、营养品质及蒸煮品质得到改善,尤以降低垩白率效果最为明显;稻田生态系统综合效益明显提高。  相似文献   
10.
裴广廷  马红亮  林伟  高人  尹云锋  杨柳明 《生态学报》2015,35(23):7774-7784
为探究氨基酸氮形态对亚热带土壤氮素含量及转化的影响,选择建瓯市万木林保护区的山地红壤为对象,采用室内培养实验法,通过设计60%和90%WHC两种土壤含水量并添加不同性质氨基酸,测定了土壤中铵态氮、硝态氮、可溶性有机氮的含量和氧化亚氮的释放量,分析了可溶性有机碳、土壤p H值的大小变化及其与氮素的相互关系。结果表明:与对照处理相比,氨基酸添加显著增加了土壤NH_4~+-N含量并使土壤p H值升高,且在一定程度上解除了高含水量(90%WHC)对NH_4~+-N产生的抑制,其中甲硫氨基酸的效果最为明显。酸性、碱性、中性氨基酸对土壤NO_3~--N含量和N_2O释放影响不显著,但甲硫氨基酸可显著抑制土壤硝化从而导致NH_4~+-N的积累,并在培养前期抑制土壤N_2O产生而在培养后期促进N_2O释放,总体上促进N_2O释放。60%WHC的氨基酸添加处理较90%WHC条件下降低土壤可溶性有机氮的幅度更大。氨基酸对土壤氮素转化的影响与带电性关系较小,而可能与其分解产物密切相关。可见,不同性质氨基酸处理对森林土壤氮素含量及转化存在不同程度的影响,且甲硫氨基酸对土壤氮素转化的影响机理值得深入研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号