首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1976年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.
The nicotine-induced release of catecholamines and opioid peptides from bovine chromaffin cells is inhibited by the amidated opioid peptide amidorphin. The active site of this inhibitory activity is located at the peptide's C-Terminus, which is, in contrast to the N-terminal sequence TYR-GLY-GLY-PHE, not responsible for the opioidergic activity of opioid peptides. The noradrenaline-secretion induced by histamine, a non-cholinergic secretagogue, has not been inhibited by amidorphin.  相似文献   
2.
Staphylococcus intermedius cultures from dogs, pigeons, horses and mink were investigated for the prevalence of the insertion elements IS 256 and IS 257 in relation to their antibiotic resistance. Copies of IS 256 could not be detected in any of the Staph. intermedius isolates tested whereas single copies of IS 257 occurred in the isolates from dogs and horses. The mink strains did not harbour IS 257 elements, whereas Staph. intermedius isolates from pigeons carried multiple copies of IS 257 as predicted from the hybridization patterns obtained with a gene probe derived from the internal part of the IS 257 -encoded transposase gene. Independently of the origin of the Staph. intermedius isolates, all IS 257 copies were found to be located in the chromosomal DNA. The large number of chromosomal IS 257 copies in the pigeon strains might help to explain chromosomal multiresistance in many of those strains.  相似文献   
3.
Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e., the biogenesis of apical plasma membrane domains, in well-differentiated hepatic cells. Thus, inhibition of dihydroceramide synthase or sphinganine kinase activity with fumonisin B1 or N,N-dimethylsphingosine, respectively, dramatically perturbs cell polarity development, which is due to increased levels of sphinganine. Consistently, reduction of free sphinganine levels stimulates cell polarity development. Moreover, dihydroceramide synthase, the predominant enzyme responsible for sphinganine turnover, is a target for cell polarity stimulating cAMP/protein kinase A (PKA) signaling cascades. Indeed, electrospray ionization tandem mass spectrometry analyses revealed a significant reduction in sphinganine levels in cAMP/PKA-stimulated cells. These data suggest that sphinganine turnover is critical for and is actively regulated during HepG2 cell polarity development. Previously, we have identified an apical plasma membrane-directed trafficking pathway from the subapical compartment. This transport pathway, which is part of the basolateral-to-apical transcytotic itinerary, plays a crucial role in apical plasma membrane biogenesis. Here, we show that, as a part of the underlying mechanism, the inhibition of dihydroceramide synthase activity and ensuing increased sphinganine levels specifically perturb the activation of this particular pathway in the de novo apical membrane biogenesis.  相似文献   
4.
For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.  相似文献   
5.
Conjugated linoleic acids (CLA) are dietary fatty acids. Whereas cis-9,trans-11-(c9,t11)-CLA can be found in meat and dairy products, trans-9,trans-11-(t9,t11)-CLA is a constituent of vegetable oils. Previous studies showed that these two isomers activate different nuclear receptors and, thus, expression of genes related to lipid metabolism. Here we show that these CLA isomers are differentially elongated and desaturated in primary monocyte-derived macrophages isolated from healthy volunteers by using gas chromatography-mass spectrometry (GC-MS). We further demonstrate that c9,t11-CLA incorporates in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species and activates de novo glycerophospholipid synthesis by quantitative electrospray ionization-tandem mass spectrometry (ESI-MS/MS). c9,t11-CLA leads to strong shifts of the species profiles to PC 18:2/18:2 and PE 18:2/18:2, which are due to de novo synthesis and fatty acid remodeling. In contrast, t9,t11-CLA is preferentially bound to neutral lipids, including triglycerides and cholesterol esters. Taken together our results show that c9,t11-CLA and t9,t11-CLA have differential effects on PC and PE metabolism. Moreover, these data demonstrate that the structure of fatty acids not only determines their incorporation into lipid classes but also modulates the kinetics of lipid metabolism, particularly PC synthesis.  相似文献   
6.
Previous time-resolved FTIR measurements suggested the involvement of an intermediary component in the electron transfer step Q(A)- --> Q(B) in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides [Remy and Gerwert (2003) Nat. Struct. Biol. 10, 637]. By a kinetic X-ray absorption experiment at the Fe K-edge we investigated whether oxidation occurs at the ferric non-heme iron located between the two quinones. In isolated reaction centers with a high content of functional Q(B), at a time resolution of 30 micros and at room temperature, no evidence for transient oxidation of Fe was obtained. However, small X-ray transients occurred, in a similar micro- to millisecond time range as in the IR experiments, which may point to changes in the Fe ligand environment due to the charges on Q(A)- and Q(B)-. In addition, VIS measurements agree with the IR data and do not exclude an intermediate in the Q(A)- --> Q(B) transition.  相似文献   
7.
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.  相似文献   
8.
Circulating blood cell lipid composition may become increasingly important to provide new insights into cellular lipid abnormalities in diseases. Here we compared lipid species in monocytes, lymphocytes, granulocytes, platelets and red blood cells (RBC) of healthy volunteers using electrospray ionization tandem mass spectrometry and detected striking differences among the examined blood cells. The different cell types were characterized by unique lipid class and lipid species pattern. The predominant lipid classes were phosphatidylcholine (PC) and free cholesterol (FC) with cell type specific PC/FC ratios as markers of membrane fluidity which was 1.9 in monocytes, 1.3 in lymphocytes, 1.1 in granulocytes, 0.8 in platelets and 0.3 in RBC, respectively. Beside a three-fold elevated ceramide level of 2.6 mol%, granulocytes revealed the highest percentage of phosphatidylethanolamine-based plasmalogens and a decreased fraction of highly polyunsaturated (> or =3 double bonds) species compared to other cell types. Furthermore RBC showed a remarkable shift of glycerophospholipid chain length and platelets a nearly 4-fold increase of the cholesterol ester (CE) 18:2 (linoleic acid) fraction (55 mol% of total CE). In conclusion, the current study is a detailed comparison of lipid species in circulating blood cells of healthy human donors. This work could be a reference for studies in different patient cohorts directed towards discovery of novel lipid biomarkers in circulating blood cells.  相似文献   
9.
In maturing fruits ofPhaseolus coccineus a soluble glucosyltransferase activity occurs which converts gibberellins into their O-glucosides. The enzyme glucosylates GA3 and structurally closely related gibberellins (GA7 and GA30) to their 3-O-glucosides by transfer of glucose preferentially from UDP-glucose. From cell suspension cultures ofLycopersicon peruvianum cytosolic glucosyltransferases were isolated which in the presence of UDP-glucose converted GA7 and GA9 to the corresponding glucosyl esters. In both cases numerous other gibberellins failed to serve as substrates. Thus, the enzymes are UDP-glucose: gibberellin glucosyltransferases of considerable substrate specificity.  相似文献   
10.
Recent developments in lipid mass spectrometry enable extensive lipid class and species analysis in metabolic disorders such as diabesity and metabolic syndrome. The minor plasma lipid class sphingosylphosphorylcholine (SPC) was identified as a ligand for lipid sensitive G-protein coupled receptors playing a key role in cell growth, differentiation, motility, calcium signaling, tissue remodeling, vascular diseases and cancer. However, information about its role in diabesity patients is sparse. In this study, we analyzed plasma lipid species in patients at risk for diabesity and the metabolic syndrome and compared them with healthy controls. Our data show that SPC is significantly increased in plasma samples from metabolic syndrome patients but not in plasma from patients at risk for diabesity. Detailed SPC species analysis showed that the observed increase is due to a significant increase in all detected SPC subspecies. Moreover, a strong positive correlation is observed between total SPC and individual SPC species with both body mass index and the acute phase low grade inflammation marker soluble CD163 (sCD163). Collectively, our study provides new information on SPC plasma levels in metabolic syndrome and suggests new avenues for investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号