首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   118篇
  2023年   3篇
  2022年   8篇
  2021年   31篇
  2020年   11篇
  2019年   15篇
  2018年   23篇
  2017年   23篇
  2016年   29篇
  2015年   55篇
  2014年   65篇
  2013年   89篇
  2012年   73篇
  2011年   77篇
  2010年   56篇
  2009年   49篇
  2008年   63篇
  2007年   75篇
  2006年   68篇
  2005年   48篇
  2004年   36篇
  2003年   40篇
  2002年   39篇
  2001年   14篇
  2000年   13篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1985年   3篇
  1983年   5篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1174条查询结果,搜索用时 296 毫秒
1.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
2.
3.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   
4.
The effect of growth at 5°C on the trans3-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans3-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans3-hexadecenoic acid content was shown to be a linear function (r2 = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans3-hexadecenoic acid content. Thus, the relationship between the change in trans3-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans3-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed.  相似文献   
5.
6.
Antisense genes in plants: an overview   总被引:18,自引:0,他引:18  
Plants are the first multicellular higher eukaryotic organisms in which artificial antisense genes have been shown to down-regulate target gene expression. Manipulations with an antisense gene can serve as a tool to study the effect of a particular plant gene inactivation, the interaction of gene products whose genes are coordinately expressed, or the functional analysis of cryptic genes. Transgenic plants harbouring an antisense gene already gave rise to patentable new characteristics, showing that the technique has great scientific and economic value.  相似文献   
7.
The effects of natural, overwintering conditions on photosystem I and photosystem II activity were examined in isolated thylakoids of periwinkle (Vinca minor L.), an endemic, cold-tolerant, herbaceous evergreen. DCMU-Insensitive photosystem I activity (ascorbate/dichlorophenolindophenol → methylviologen) exhibited a twofold increase in light-saturated rates upon exposure to low temperature and freezing stress with no effect on the apparent quantum yield of this reaction. DCMU-Sensitive photosystem II activity (H2O → dichlorlophenolindophenol) exhibited only minor fluctuations in light-saturated rates but a 50% decrease in the apparent quantum yield of this reaction upon exposure to overwintering conditions. This was correlated with a decrease in the 77°K fluorescence emission at 694 nanometers. These functional changes occurred with no detectable changes in the relative chlorophyll contents of the chlorophyll-protein complexes or the chlorophyll-thylakoid protein. The chlorophyll a/b varied less than 10% during any single growth year. Analyses of total leaf extracts indicated that all lipid classes exhibited increased levels of linoleic and linolenic acid. Neither the trans3-hexadecenoic acid level nor the ratio of oligomeric:monomeric light harvesting of photosystem II was affected by exposure to winter stress. The content of the major chloroplast lipids monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidyl-diacyl-glycerol, and sulfoquinovosyldiacylglycerol exhibited minor fluctuations, whereas phosphatidylcholine and phosphatidylethanolamine content doubled on a mole percent or chlorophyll basis. We conclude that the previously reported increase in photosystem I activity during controlled, low temperature growth is observed during exposure to natural overwintering conditions. This appears to occur with minimal changes in the structure and composition of the photosynthetic apparatus of periwinkle.  相似文献   
8.
We present evidence for the existence of an additional long-range interaction in vertebrate U1 snRNAs. By submitting human U1 snRNP, HeLa nuclear extracts, authentic human or X. laevis in vitro transcribed U1 snRNAs to RNase V1, a nuclease specific for double-stranded regions, cleavages occurred in the sequence psi psi ACC (positions 5-9) residing in the 5' terminal region of the RNA. The RNase V1 sensitive region is insensitive to single-stranded probes, something unexpected knowing that it was considered single-stranded in order to base-pair to pre-mRNA 5' splice site. We have identified the sequence GGUAG (positions 132-136) as the only possible 3' partner. Mutants, either abolishing or restoring the interaction between the partners, coupled to an RNase V1 assay, served to substantiate this base-pairing model. The presence of this additional helix, even detected in nuclear extracts under in vitro splicing conditions, implies that a conformational change must occur to release a free U1 snRNA 5' end.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号