首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有33条查询结果,搜索用时 46 毫秒
1.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   
2.
The present study was conducted to characterize the N‐metabolism of important European tree species with different degrees of flooding tolerance. The roots of Fagus sylvatica (sensitive to flooding), Quercus robur (moderately flood tolerant) and Populus tremula × P. alba (flood tolerant) saplings were exposed to different flooding regimes and N uptake, amino acid, protein and chlorophyll concentrations as well as gas exchange were measured. The effects of these treatments on the tree species varied distinctly. In general, the N metabolism of beech was severely affected whereas less impacts were observed on oaks and almost no effects on poplars. The concentrations of amino compounds, particularly of Asp, Asn, Glu and Gln, were lower in the roots of flooded trees than in controls. By contrast, γ‐amino butyric acid concentrations increased. Root protein concentrations remained unaffected in oak and poplar but decreased in beech in response to flooding. The concentrations of pigments remained unaffected by flooding in all tree species investigated. However, photosynthesis and transpiration were severely affected in beech but much less in oak and poplar. The data obtained show a clear correlation between the different flooding tolerances of the trees investigated and the impacts of flooding on N uptake and N metabolism.  相似文献   
3.
Phytopathogenic fungi infections induce plant defence responses that mediate changes in metabolic and signalling processes with severe consequences for plant growth and development. Sphaeropsis tip blight, induced by the endophytic fungus Sphaeropsis sapinea that spreads from stem tissues to the needles, is the most widespread disease of conifer forests causing dramatic economic losses. However, metabolic consequences of this disease on bark and wood tissues of its host are largely unexplored. Here, we show that diseased host pines experience tissue dehydration in both bark and wood. Increased cytokinin and declined indole‐3‐acetic acid levels were observed in both tissues and increased jasmonic acid and abscisic acid levels exclusively in the wood. Increased lignin contents at the expense of holo‐cellulose with declined structural biomass of the wood reflect cell wall fortification by S. sapinea infection. These changes are consistent with H2O2 accumulation in the wood, required for lignin polymerization. Accumulation of H2O2 was associated with more oxidized redox states of glutathione and ascorbate pools. These findings indicate that S. sapinea affects both phytohormone signalling and the antioxidative defence system in stem tissues of its pine host during the infection process.  相似文献   
4.
5.
6.
7.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   
8.
Diurnal pattern of acetaldehyde emission by flooded poplar trees   总被引:7,自引:0,他引:7  
The emission of the tropospheric trace gas acetaldehyde was determined in leaves of 4-month-old poplar trees ( Populus tremula × P. alba ) grown under controlled environmental conditions in a greenhouse. Using a dynamic cuvette system together with a high sensitivity laser-based photoacoustic detection unit, rates of acetaldehyde emission were measured with the high time resolution of about 15 min. Submergence of the roots resulted in the emission of acetaldehyde by the leaves. The emission increased linearly before reaching more or less steady-state values (ca 350 nmol m−2 min−1; ca 470 ng g−1 dry weight min−1) after approximately 6 h. Prolonged flooding of poplar trees resulted in a clear diurnal rhythm of acetaldehyde emission. The emission rates decreased when the light was switched off in the evening and peaked in the morning after the light was turned on again. This pattern significantly correlated with diurnal rhythms of stomatal conductance, photosynthesis, transpiration and with the concentrations of ethanol, the assumed precursor of acetaldehyde, in the xylem sap of flooded poplar trees. It may be concluded that under conditions of diminished stomatal conductance, acetaldehyde emission declines because its diffusive flux is reduced. Alternatively, reduced transpiration may decrease ethanol transport from the roots to the shoots and appreciable amounts of the acetaldehyde precursor ethanol are lacking in the leaves. The present results support the view that acetaldehyde emitted by the leaves of plants is derived from ethanol produced by alcoholic fermentation in submerged roots and transported to the leaves with the transpiration stream.  相似文献   
9.
Abstract: The fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) were measured in mangrove wetlands in Queensland, Australia, using the closed chamber technique. Large differences in the fluxes of both gases from different study sites were observed, which presumably depended on differences in substrate availability. CH4 emission rates were in the range of 20 to 350 μg m‐2 h‐1, whereas N2O fluxes were lower, amounting to ‐ 2 to 14 μg m‐2 h‐1. In general, the field sites with high substrate availability showed higher emissions than sites with poor nutrient supply. This assumption is supported by the observation of dramatically increased N2O emissions (150 ‐ 400 μg m‐2 h‐1) if study sites were artificially fertilised with additional N. As expected, N fertilisation did not alter CH4 fluxes during the period of investigation. In the present study, it was confirmed that the mangrove vegetation may play a role as a transport path for CH4 and N2O by facilitating diffusion out of the soil. Prop roots from Rhizophora stylosa emitted CH4 and N2O at rates of 2.6 and 3.3 μg m‐2 root surface h‐1, respectively, whereas the soil of this stand acted as a sink for CH4. As a consequence, the ecosystem as a whole could constitute a CH4 source despite CH4 uptake by the soil. In contrast to prop roots, the presence of pneumatophores in Avicennia marina led to a significant increase in CH4 emissions from mangrove soils, but did not enhance N2O emissions. These findings indicate that mangrove ecosystems may be considered a significant source of N2O and that anthropogenic nutrient input into these ecosystems will lead to enhanced source strengths. For an up‐scaling of greenhouse gas emissions from mangrove forests to a global scale, more information is needed, particularly on the significance of vegetation.  相似文献   
10.
Interaction of flooding with carbon metabolism of forest trees   总被引:5,自引:0,他引:5  
Waterlogging and flooding cause oxygen deprivation in the root system of trees. Since oxygen is essentially for mitochondrial respiration, this process cannot be maintained under anoxic conditions and must be replaced by other pathways. For the roots it is therefore a matter of survival to switch from respiration to alcoholic fermentation. Due to the low efficiency of this process to yield energy equivalents (ATP), energy and carbon metabolism of trees are usually strongly affected by oxygen deprivation, even if a rapid switch from respiration to fermentation is achieved. The roots can compensate for the low energy yield of fermentation either (1) by decreasing the demand for energy by a reduction of energy-dependent processes such as root growth and/or nutrient uptake, or (2) by consuming more carbohydrates per unit time in order to generate sufficient energy equivalents. In the leaves of trees, flooding and waterlogging cause a decline in the rates of photosynthesis and transpiration, as well as in stomatal conductance. It is assumed that, due to reduced phloem transport, soluble sugars and starch accumulate in the leaves of flooded trees, thereby negatively affecting the sugar supply of the roots. Thus, root growth and survival is negatively affected by both changes in root internal carbon metabolism and impaired carbon allocation to the roots by phloem transport. In addition, accumulation of toxic products of fermentation in the roots, such as acetaldehyde, can further impair root metabolism. A main feature of tolerance against flooding and waterlogging of trees seems to be the steady supply of carbohydrates to the roots in order to maintain alcoholic fermentation; in addition, roots of tolerant trees seem to avoid accumulation of fermentation-derived ethanol and acetaldehyde. From studies with flooding tolerant and non-tolerant tree species, it is hypothesized that (1) the transport of ethanol produced in the roots under hypoxic conditions into the leaves via the transpiration stream, (2) its conversion into acetyl-CoA in the leaves, and (3) its use in the plant's general metabolism, are mechanisms of flooding tolerance of trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号