首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1988年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response.  相似文献   
2.
Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.  相似文献   
3.
4.
4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy.  相似文献   
5.
Chronic lead exposure induces hypertension and alters endothelial function. However, treatment with low lead concentrations was not yet explored. We analyzed the effects of 7 day exposure to low lead concentrations on endothelium-dependent responses. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent dose 0.05 μg/100 g, i.m. to cover daily loss) or vehicle; blood levels attained at the end of treatment were 9.98 μg/dL. Lead treatment had the following effects: increase in systolic blood pressure (SBP); reduction of contractile response to phenylephrine (1 nM-100 μM) of aortic rings; unaffected relaxation induced by acetylcholine (0.1 nM-300 μM) or sodium nitroprusside (0.01 nM-0.3 μM). Endothelium removal, N(G)-nitro-L-arginine methyl ester (100 μM) and tetraethylammonium (2 mM) increased the response to phenylephrine in treated rats more than in untreated rats. Aminoguanidine (50 μM) increased but losartan (10 μM) and enalapril (10 μM) reduced the response to phenylephrine in treated rats. Lead treatment also increased aortic Na(+)/K(+)-ATPase functional activity, plasma angiotensin-converting enzyme (ACE) activity, protein expression of the Na(+)/K(+)-ATPase alpha-1 subunit, phosphorylated endothelial nitric oxide synthase (p-eNOS), and inducible nitric oxide synthase (iNOS). Our results suggest that on initial stages of lead exposure, increased SBP is caused by the increase in plasma ACE activity. This effect is accompanied by increased p-eNOS, iNOS protein expression and Na(+)/K(+)-ATPase functional activity. These factors might be a compensatory mechanism to the increase in SBP.  相似文献   
6.
7.
Gender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones’ effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+) channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences. Aortic rings from female and male rats were used to examine the involvement of K+ channels and Na+K+-ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100 µM) and the following K+ channels blockers: tetraethylammonium (TEA, 2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 µM) and charybdotoxin (ChTX, 0.1 µM). The ACh-induced relaxation sensitivity was greater in the female group. After incubation with 4-AP the ACh-dependent relaxation was reduced in both groups. However, the dAUC was greater in males, suggesting that the voltage-dependent K+ channel (Kv) participates more in males. Inhibition of the three types of Ca2+-activated K+ channels induced a greater reduction in Rmax in females than in males. The functional activity of the Na+K+-ATPase was evaluated by KCl-induced relaxation after L-NAME and OUAincubation. OUA reduced K+-induced relaxation in female and male groups, however, it was greater in males, suggesting a greater Na+K+-ATPase functional activity. L-NAME reduced K+-induced relaxation only in the female group, suggesting that nitric oxide (NO) participates more in their functional Na+K+-ATPase activity. These results suggest that the K+ channels involved in the gender-based vascular relaxation differences are the large conductance Ca2+-activated K+ channels (BKCa) in females and Kv in males and in the K+-induced relaxation and the Na+K+-ATPase vascular functional activity is greater in males.  相似文献   
8.
9.
Gemcitabine is an anticancer nucleoside analogue active against a wide variety of solid tumors. However it is rapidly deaminated to an inactive metabolite, leading to short biological half-life and induction of resistance. A new prodrug of gemcitabine, coupling squalene to gemcitabine (GemSq), has been designed to overcome the above drawbacks. It has been previously shown that this prodrug displays significantly higher anticancer activity than gemcitabine against leukemia. In the present study the structural modifications of dipalmitoylphosphatidylcholine (DPPC) model membranes induced by increasing concentrations of GemSQ have been investigated using small and wide angle X-ray scattering (SWAXS) and differential scanning calorimetry (DSC). At room temperature an unusual inverse bicontinuous cubic phase formed over a broad composition range. The basic bilayer structure displayed an intermediate order between those of the gel and fluid phases of DPPC. A reversible transition to a fluid lamellar phase occurred upon heating. The transitions between these two phases were governed by different mechanisms depending on the GemSq concentration in the membrane. Finally, the biological relevance of these observations for the cytotoxic activity of GemSq has been discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号