首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1979年   1篇
  1973年   1篇
排序方式: 共有65条查询结果,搜索用时 281 毫秒
1.
It has been shown earlier that the DNA double helix is opened due to a prolonged contact of the DNA molecule with the surface of the mercury electrode. At neutral pH, the opening process is relatively slow (around 100 s), and it is limited to potentials close to -1.2 V (against SCE). The opening of the double helix has been explained by strains in the DNA molecule due to strong repulsion of the negatively charged phosphate residues from the electrode surface where the polynucleotide chain is anchored via hydrophobic bases. Interaction of the synthetic ds polynucleotides with alternating nucleotide sequences/poly(dA-dT).poly (dA-dT), poly (dA-dU).poly (dA-dU), poly (dG-dC).poly (dG-dC)/ and homopolymer pairs/poly (dA).poly (dT), poly (rA).poly (rU) and poly (dG).poly (dC)/ with the hanging mercury drop electrode has been studied. Changes in reducibility of the polynucleotides were exploited to indicate opening of the double helix. A marked difference in the behaviour was observed between polynucleotides with alternating nucleotide sequence and homopolymer pairs: opening of the double-helical structures of the former polynucleotides occurs at a very narrow potential range (less than 100 mV) (region U), while with the homopolymer pairs containing A X T or A X U pairs, the width of this region is comparable to that of natural DNA (greater than 200 mV). In contrast to natural DNA, the region U of homopolymer pairs is composed of two distinct phases. No region U was observed with poly (dG).poly (dC). In polynucleotides with alternating nucleotide sequence, the rate of opening of the double helix is strongly dependent on the electrode potential in region U, while in homopolymer pairs, this rate is less potential-dependent. It has been assumed that the difference in the behaviour between homopolymer pairs and polynucleotides with alternating nucleotide sequence is due to differences in absorbability of the two polynucleotide chains in the molecule of a homopolymer pair (resulting from different absorbability of purine and pyrimidine bases) in contrast to equal adsorbability of both chains in a polynucleotide molecule with alternating nucleotide sequence. It has been shown that the mercury electrode is a good model of biological surfaces (e.g. membranes), and that the nucleotide sequence-dependent opening (unwinding) of the DNA double helix at electrically charged surfaces may play an important role in many biological processes.  相似文献   
2.
Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth''s history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet''s surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.  相似文献   
3.
Among the key issues determining success of a study employing molecular genetics tools in wildlife monitoring or research is a large enough set of highly informative genetic markers and a reliable, cost effective method for their analysis. While optimized commercial genotyping kits have been developed for humans and domestic animals, such protocols are rare in wildlife research. We developed a highly optimized multiplex PCR that genotypes 12 microsatellite loci and a sex determination locus in brown bear (Ursus arctos) faecal samples in a single multiplex PCR and a single sequencer run. We used this protocol to genotype 1053 faecal samples of bears from the Dinaric population, and obtained useful genotypes for 88% of the samples, a very high success rate. The new protocol outperformed the multiplex pre-amplification strategy used in a previous study of 473 faecal samples with a 78.4% success rate. On a subset of 182 samples we directly compared the performance of both approaches, and found no advantage of the multiplex pre-amplification. While pre-amplification protocols might still improve PCR success and reliability on a small fraction of low-quality samples, the higher costs and workload do not justify their use when analysing reasonably fresh non-invasive material. Moreover, the high number of multiplexed loci in the new protocol makes it comparable to commercially developed genotyping kits developed for domestic animals and humans.  相似文献   
4.
5.
Soluble guanylyl cyclase (sGC), a key protein in the NO/cGMP signaling pathway, is an obligatory heterodimeric protein composed of one alpha- and one beta-subunit. The alpha(1)/beta(1) sGC heterodimer is the predominant form expressed in various tissues and is regarded as the major isoform mediating NO-dependent effects such as vasodilation. We have identified three new alpha(1) sGC protein variants generated by alternative splicing. The 363 residue N1-alpha(1) sGC splice variant contains the regulatory domain, but lacks the catalytic domain. The shorter N2-alpha(1) sGC maintains 126 N-terminal residues and gains an additional 17 unique residues. The C-alpha(1) sGC variant lacks 240 N-terminal amino acids, but maintains a part of the regulatory domain and the entire catalytic domain. Q-PCR of N1-alpha(1), N2-alpha(1) sGC mRNA levels together with RT-PCR analysis for C-alpha(1) sGC demonstrated that the expression of the alpha(1) sGC splice forms vary in different human tissues indicative of tissue-specific regulation. Functional analysis of the N1-alpha(1) sGC demonstrated that this protein has a dominant-negative effect on the activity of sGC when coexpressed with the alpha(1)/beta(1) heterodimer. The C-alpha(1) sGC variant heterodimerizes with the beta(1) subunit and produces a fully functional NO- and BAY41-2272-sensitive enzyme. We also found that despite identical susceptibility to inhibition by ODQ, intracellular levels of the 54-kDa C-alpha(1) band did not change in response to ODQ treatments, while the level of 83 kDa alpha(1) band was significantly affected by ODQ. These studies suggest that modulation of the level and diversity of splice forms may represent novel mechanisms modulating the function of sGC in different human tissues.  相似文献   
6.
This work answers some questions related to detection of rheological properties of soft tissues exemplified in myometrium, stressed by external tensile force. In the first stage of the experiment the tissue samples were ciclically stressed and response loops were recorded. This test proved severe plastical deformation of samples, which is not usually being stated for living tissues. In addition to course, growth and stabilizing this deformation also energetical losses of individual hysteresis loops of the response were evaluated. In the second stage of the experiment the tissue samples were exposed to a loading force changed in step-wise manner in four steps. The sample response to each force step was processed and evaluated separately to obtain basic properties of used model. In next step, the changes in model characteristics were obtained and evaluated for each element in subsequent force steps. By reason of following easier interpretation, the quite simple visco-elastic model, defined by differential equation with analytic solution, is used. The results prove necessary to introduce in model both spring and damper constants dependent on the magnitude of the loading force and one damper with even time dependent constant. The interindividual variability of characteristic values of the model elements is surprisingly low. On the other side, they are strongly dependent on load magnitude. Complete mathematical model of uterine wall tissue is obtained by amending the principal equation by formulas describing changes in individual components of the model.  相似文献   
7.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.  相似文献   
8.
9.
10.
A range of N-glycosyl-thiophene-2-carboxamides, including a 6H-thieno[2,3-c]pyridin-7-one and a bivalent compound, have been synthesised and assayed for their effects on DNA synthesis in bovine aortic endothelial cells or on the growth of synoviocytes. Per-O-acetylated analogues of the glycoconjugates were significantly more effective inhibitors when compared to their corresponding non-acetylated analogues, indicating that the lower potency observed for hydroxylated derivatives is due to less efficient transport of these compounds across the cell membrane. Thiophene-2-carboxamide was inactive as an inhibitor of bFGF induced proliferation, confirming the requirement of the carbohydrate residue for the observed biological properties. Glucose, mannose, galactose and 2-amino-2-deoxy-glucose analogues were active as were a variety of substituted thiophene derivatives; the 6H-thieno[2,3-c]pyridin-7-one conjugate was inactive. Conformational analysis of the title compounds was investigated. X-ray crystal structural analysis of four N-glucosyl-thiophene-2-carboxamides showed that the pyranose rings adopted the expected 4C1 conformations and that Z-anti structures were predominant (H1-C1-N-H anomeric torsion angle varied from -168.2 degrees to -175.0 degrees ) and that the carbonyl oxygen and sulfur of the thiophene adopted an s-cis conformation in three of the isomers. In a crystal structure of a 3-alkynyl derivative, the hydrogen atom of the NH group was directed toward the acetylene group. The distance between the hydrogen atom and acetylene carbons and angles between nitrogen, hydrogen and carbon atoms were consistent with hydrogen bonding and this was supported by IR and NMR spectroscopic studies. The geometries of thiophene-2-carboxamides were explored by density functional theory (DFT) and M?ller-Plesset (MP2) calculations and the s-cis conformer of thiophene-2-carboxamide was found to be more stable than its s-trans isomer by 0.83 kcal mol(-1). The s-cis conformer of 3-ethynyl-thiophene-2-carboxamide was 5.32 kcal mol(-1) more stable than the s-trans isomer. The larger stabilisation for the s-cis conformer in the 3-alkynyl derivatives is explained to be due to a moderate hydrogen bonding interaction between the alkyne and NH group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号