首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1996年   1篇
  1989年   3篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有50条查询结果,搜索用时 895 毫秒
1.
A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells. In mouse about 13 GEP endocrine cell types are distinguished: 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. beta-endorphin-, 13. serotonin-immunoreactive cells. Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1-9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells. Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonius. In mouse pancreas and fish gut, endocrine cells showing only PP- or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-t-gastrin- and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed. Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.  相似文献   
2.
Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), a major shrimp pathogen. Formalin-inactivated virus and WSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed.  相似文献   
3.
White spot syndrome virus (WSSV) has been a major cause of shrimp mortality in aquaculture worldwide in the past decades. In this study, WSSV infection (by immersion) and behaviour recruitment of haemocytes is investigated in gills and midgut, using an antiserum against the viral protein VP28 and a monoclonal antibody recognising haemocytes (WSH8) in a double immunohistochemical staining and in addition transmission electron microscopy was applied. More WSH 8(+) haemocytes were detected at 48 and 72 h post-infection in the gills of infected shrimp compared to uninfected animals. Haemocytes in the gills and midgut were not associated with VP28-immunoreactivity. In the gills many other cells showed virus replication in their nuclei, while infected nuclei in the gut cells were rare. Nevertheless, the epithelial cells in the midgut showed a clear uptake of VP28 and accumulation in supranuclear vacuoles (SNV) at 8h post-infection. However, epithelial nuclei were never VP28-immunoreactive and electron microscopy study suggests degradation of viral-like particles in the SNV. In contrast to the gills, the midgut connective tissue shows a clear increase in degranulation of haemocytes, resulting in the appearance of WSH8-immunoreactive thread-like material at 48 and 72 h post-infection. These results indicate recruitment of haemocytes upon immersion infection in the gills and degranulation of haemocytes in less infected organs, like the midgut.  相似文献   
4.
Teleost intestinal immunology   总被引:1,自引:0,他引:1  
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4–5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-?+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.  相似文献   
5.
Phylogeny and ontogeny of fish leucocytes   总被引:8,自引:0,他引:8  
In contrast to higher vertebrates, most fish species hatch at the embryonic stage of life. Consequently, they have to defend against a variety of micro-organisms living in their aquatic environment. This paper is focussed on the development of leucocytes functioning within this early innate system and later on in the acquired immune system (B and T cells). Most of the data are derived from cyprinid fish (zebrafish, carp), which are excellent models to study early ontogeny. Attention is also paid to the phylogeny of leucocytes, with special attention to early chordates. It is clear that young fish use innate mechanisms during the first weeks/months of their development. In zebrafish, a variety of hematopoietic genes have been sequenced which allow a detailed picture of the development of the distinct leucocytes and their precursors. In cyprinids and sea bass, the thymus is the first lymphoid organ and T cells appear to be selected there much earlier than the first detection of T cell-dependent antibody responses. The first B cells are most probably generated in head kidney. Although T cells are selected earlier than B cells, T cell independent responses occur earlier than the T cell-dependent responses. The very early (pre-thymic) appearance of T-like cells in gut of sea bass and carp suggests an extra-thymic origin of these cells. However, B cells populate the GALT much later than spleen or kidney, indicating a rather late appearance of mucosal immunity. The first plasma cells are found long after the intake of food in cyprinids, but in many marine fish they appear around the first food intake. In general, acquired immunity is not correlated to food intake.  相似文献   
6.
The ELISPOT assay was used to measure the number of specific antibody secreting cells (ASC) induced during the primary and secondary immune responses in the spleen, head kidney and gut of juvenile (5 g) sea bass (Dicentrarchus labrax) to bacterial (Vibrio anguillarum and Photobacterium damselae ssp. piscicida) and hapten dinitrophenyl-conjugated to keyhole limpet haemocyanin (DNP-KLH) antigens administered intraperitoneally. High variability among individuals was observed at each sampling day. All fish were bath vaccinated to V. anguillarum at an earlier stage (2 g) in the farm of origin prior to the development of the experiments, and therefore only secondary and tertiary responses were measured in the group immunised with this bacterium. Significant differences to the controls were observed in the primary responses of the head kidney and the spleen to P. damselae ssp. piscicida and DNP, respectively. Frequency analysis of the production of ASC suggests that significant responses in the gut might be masked by the high error variance. The peak of the primary response was observed 4 days earlier to DNP (18-20 days post-immunisation) and it was significantly higher than the response to P. damselae ssp. piscicida. Higher numbers of ASC were observed in the secondary responses of the head kidney and spleen, although they were not statistically significantly different from the primary levels, probably due to the high error variance as supported by the frequency analysis. Nevertheless, together with a faster response (peak at 7 days post-immunisation), the data suggest that memory formation had occurred. Additionally, the data suggest that some suppression of the secondary immune response in the gut might have occurred. The head kidney appears to produce the highest number of specific ASC of the organs tested. It appears that sea bass show a relatively fast but short duration antibody response.  相似文献   
7.
The development of soybean meal (SBM) induced enteritis in the hindgut of the omnivorous common carp (Cyprinus carpio L.). The developed condition was assessed when carp, continuously fed on animal protein, were transferred to a diet in which 20% of the protein was replaced by SBM. After week 1, most of the inflammation parameters were already present, but at week 3, a strong aggravation of the condition was observed which included a shortening of the mucosal folds, the disappearance of the supranuclear vacuoles, an increased number of goblet cells, a thickened lamina propria and sub-epithelial mucosa with increased numbers of basophilic granulocytes as well as a decreased uptake capacity of enterocytes (impaired endocytosis and microvilli). Contrary to previous observations made with respect to Atlantic salmon, common carp start to recover from the fourth to the fifth week after switching to SBM feeding. At this stage, the supranuclear vacuoles refill and most of the parameters revert to basal levels. During the enteritis process, a real-time quantitative PCR analysis was conducted to measure the expression of inflammatory and anti-inflammatory cytokine genes in the isolated intraepithelial lymphocytes (IEL). The pro-inflammatory interleukin 1 beta (IL-1 beta) and tumour necrosis factor alpha1 (TNF-alpha1) genes were up-regulated during the inflammation process while the anti-inflammatory interleukin 10 (IL-10) was down-regulated after an initial up-regulation at week 1. Transforming growth factor beta (TGF-beta) expression showed an up-regulation from week 3 onwards despite the high Ct value and the low primer efficiency shown. This study confirms the contribution of IEL (mainly T-like cells) and basophils in the enteritis process. In addition, the results show a clear involvement of up- and down-regulated cytokine genes in both the onset and recovery of the SBM-induced enteritis in the hindgut of carp.  相似文献   
8.
The defence system of the distal gut (hindgut and rectum) of Atlantic cod, (Gadus morhua L.) was studied using (immuno)histochemical, electron microscopical and real-time quantitative PCR techniques. The uptake and transport of macromolecules in the intestinal epithelium was also investigated.In this study we observed that cod has many and large goblet cells in its intestinal epithelium and that IgM+ cells are present in the lamina propria and their number is considerably higher in the rectum than in the intestine. Myeloperoxidase staining revealed low numbers of granulocytes in and under the epithelium of the distal intestine, whereas high numbers were found clustered in the submucosa of the rectum. Electron microscopy not only confirmed these observations, but also revealed the presence of lymphoid cells and macrophages within the intestinal epithelium. Acid phosphatase staining demonstrated more positive macrophage-like cells in the rectum than in the distal intestine. Antigen uptake studies showed a diffused absorption of horse radish peroxidase (HRP) and LTB-GFP, whereas ferritin uptake could not be detected.Basal gene expression of cytokines (IL-1β, IL-8 and IL-10) and immune relevant molecules (hepcidin and BPI/LPB) were compared in both the intestine and rectum and revealed approximately 2–9 times higher expression in the rectum, of which IL-1β expression showed the most prominent difference.The present results clearly indicate that intestinal immunity is very prominent in the rectum of cod.  相似文献   
9.
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate ‘vaccines’, WSSV envelope protein VP28 and formalin‐inactivated WSSV, can provide short‐lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live‐WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV‐intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune‐related, intracellular organelle part, intracellular calcium‐binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV‐intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.  相似文献   
10.
Summary Two protein antigens, horseradish peroxidase (HRP) and ferritin, have been administered to the digestive tract of carp. Electron-microscopical observations reveal considerable absorption of both antigens in the second segment of the gut (from 70 to 95% of the total length) and also, although to a lesser extent, in the first segment (from 0 to 70% of the total length). Even when administered physiologically with food, a large amount of ferritin is absorbed by enterocytes in the second gut segment.HRP and ferritin are processed by enterocytes in different ways. HRP seems to adhere to the apical cell membrane, probably by binding to receptors, and is transported in vesicles to branched endings of lamellar infoldings of the lateral and basal cell membrane. Consequently, most of the HRP is released in the intercellular space where it contacts intra-epithelial lymphoid cells. Only small amounts of HRP become localized in secondary lysosomes of enterocytes. Ferritin does not bind to the apical cell membrane; after uptake by pinocytosis, it is present in small vesicles or vacuoles that appear to fuse with lysosome-like-bodies. In the second segment, intact ferritin ends up in the large supranuclear vacuoles (after 8 h), where it is digested slowly. Although no ferritin is found in the intercellular space, ferritin-containing macrophages are present between the epithelial cells, in the lamina propria and also to a small extent in the spleen. The transport of antigens from the intestinal lumen, through enterocytes, to intra-epithelial lymphoid cells or macrophages may have immunological implications, such as induction of a local immune response and prospectives for oral vaccination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号