首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有18条查询结果,搜索用时 946 毫秒
1.
Abstract

Zinc homeostasis is maintained by 24 tissue-specific zinc transporters which include ZnTs (ZnT1-10), ZIPs (ZIP1-14), in addition to metallothionein (MT). Current study aimed the role of zinc transporters in maintaining the basal levels of zinc in functionally contrasting tissue specific THP-1 (monocyte), RD (muscle), and Saos-2 (bone) cells. Zinc transporters expression was assessed by qRT-PCR. The mRNA levels of ZnTs (ZnT5-7 & ZnT9), ZIPs (ZIP6-10, ZIP13-14), and MT were significantly (p?<?0.05) higher in Saos-2 compared to THP-1 and RD. The present study suggests that distinct expression pattern of zinc transporters and metallothionein might be responsible for the differential zinc assimilation.  相似文献   
2.
Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals.Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity.Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.  相似文献   
3.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.  相似文献   
4.
Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria.  相似文献   
5.
A series of four naturally occurring homoisoflavonoids and eight analogs have been synthesized starting from an appropriately substituted phenol through chroman-4-one, in four steps. The products were assigned as E-isomers based on NMR spectroscopic data. The E-isomers were converted into Z-isomers by photoisomerization. The E- and Z-isomers showed distinct chemical shifts and the differences between (E) and (Z)-homoisoflavonoids in the proton NMR spectra afford a useful method for ascertaining the stereochemistry. The antioxidant activity of homoisoflavonoids was determined by superoxide (NBT) and DPPH free radical scavenging methods. The analog 7-hydroxy-3-[(3,4,5-trihydroxyphenyl)methylene]chroman-4-one displayed excellent activity followed by sappanone A in both the methods and were several times potent than the commercial antioxidants like BHA, BHT, etc. These compounds were evaluated in vitro for their inhibitory activities against 5-lipoxygenase (5-LOX) enzyme. The analog 7-hydroxy-3-[(N,N-dimethylaminophenyl)methylene]chroman-4-one was found to possess potent inhibitory activity and was comparable to that of the standard, nordihydroguiaretic acid. These results suggest that these homoisoflavonoids, with their potent antioxidant and 5-LOX inhibitory activities, may have useful applications as antioxidants and lead compounds for asthma and inflammatory diseases.  相似文献   
6.
Inflammatory disorders represent a substantial health problem. Medicinal plants belonging to the Burseraceae family, including Boswellia, are especially known for their anti-inflammatory properties. The gum resin of Boswellia serrata contains boswellic acids, which inhibit leukotriene biosynthesis. A series of chronic inflammatory diseases are perpetuated by leukotrienes. Although Boswellia extract has proven to be anti-inflammatory in clinical trials, the underlying mechanisms remain to be characterized. TNF alpha represents one of the most widely recognized mediators of inflammation. One mechanism by which TNFalpha causes inflammation is by potently inducing the expression of adhesion molecules such as VCAM-1. We sought to test the genetic basis of the antiinflammatory effects of BE (standardized Boswellia extract, 5-Loxin) in a system of TNF alpha-induced gene expression in human microvascular endothelial cells. We conducted the first whole genome screen for TNF alpha- inducible genes in human microvascular cells (HMEC). Acutely, TNF alpha induced 522 genes and downregulated 141 genes in nine out of nine pairwise comparisons. Of the 522 genes induced by TNF alpha in HMEC, 113 genes were clearly sensitive to BE treatment. Such genes directly related to inflammation, cell adhesion, and proteolysis. The robust BE-sensitive candidate genes were then subjected to further processing for the identification of BE-sensitive signaling pathways. The use of resources such as GenMAPP, KEGG, and gene ontology led to the recognition of the primary BE-sensitive TNF alpha-inducible pathways. BE prevented the TNF alpha-induced expression of matrix metalloproteinases. BE also prevented the inducible expression of mediators of apoptosis. Most strikingly, however, TNF alpha-inducible expression of VCAM-1 and ICAM-1 were observed to be sensitive to BE. Realtime PCR studies showed that while TNF alpha potently induced VCAM-1 gene expression, BE completely prevented it. This result confirmed our microarray findings and built a compelling case for the anti-inflammatory property of BE. In an in vivo model of carrageenan-induced rat paw inflammation, we observed a significant antiinflammatory property of BE consistent with our in vitro findings. These findings warrant further research aimed at identifying the signaling mechanisms by which BE exerts its anti-inflammatory effects.  相似文献   
7.
Liu M  Gong X  Alluri RK  Wu J  Sablo T  Li Z 《Biological chemistry》2012,393(3):123-132
We have examined the level of 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine, in RNA in Escherichia coli under normal and oxidative stress conditions. The level of 8-oxo-G in RNA rises rapidly and remains high for hours in response to hydrogen peroxide (H?O?) challenge in a dose-dependent manner. H?O? induced elevation of 8-oxo-G content is much higher in RNA than that of 8-hydroxydeoxyguanosine (8-oxo-dG) in DNA. Under normal conditions, the 8-oxo-G level is low in RNA isolated from the ribosome and it is nearly three times higher in non-ribosomal RNAs. In contrast, 8-oxo-G generated by a short exposure to H?O? is almost equally distributed in various RNA species, suggesting that although ribosomal RNAs are normally less oxidized, they are not protected against exogenous H?O?. Interestingly, highly folded RNA is not protected from oxidation because 8-oxo-G generated by H?O? treatment in vitro increases to approximately the same levels in tRNA and rRNA in both native and denatured forms. Lastly, increased RNA oxidation is closely associated with cell death by oxidative stress. Our data suggests that RNA is a primary target for reactive oxygen species and RNA oxidation is part of the paradox that cells have to deal with under oxidative stress.  相似文献   
8.
9.
10.
Need for new drugs to fight against tuberculosis (TB) is increasing day by day. In the present work we have taken a spiro compound (GSK 2200150A) reported by GSK as a lead and we modified the structure of the lead to study the antitubercular activity. For structure activity profiling twenty-one molecules have been synthesized, characterized and evaluated for their antimycobacterial potency against both active and dormant TB. Compound 06, 1-((4-methoxyphenyl)sulfonyl)-4′,5′-dihydrospiro[piperidine-4,7′-thieno[2,3-c]pyran] was found to be the most potent compound (MIC: 8.23?µM) in active TB and was less effective than the lead but more potent than standard first line drug ethambutol. It was also found to be more efficacious than Isoniazid and Rifampicin and equipotent as Moxifloxacin against dormant Mycobacterium tuberculosis (MTB). Compound 06 also showed good inhibitory potential against over expressed latent MTB enzyme lysine ε-amino transferase with an IC50 of 1.04?±?0.32?µM. This compound is a good candidate for drug development owing to potential against both active and dormant stages of MTB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号