首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14523篇
  免费   1297篇
  国内免费   1460篇
  2024年   31篇
  2023年   254篇
  2022年   331篇
  2021年   905篇
  2020年   691篇
  2019年   759篇
  2018年   699篇
  2017年   557篇
  2016年   796篇
  2015年   975篇
  2014年   1210篇
  2013年   1238篇
  2012年   1456篇
  2011年   1261篇
  2010年   715篇
  2009年   667篇
  2008年   770篇
  2007年   654篇
  2006年   512篇
  2005年   447篇
  2004年   426篇
  2003年   287篇
  2002年   314篇
  2001年   162篇
  2000年   133篇
  1999年   138篇
  1998年   99篇
  1997年   101篇
  1996年   71篇
  1995年   70篇
  1994年   69篇
  1993年   44篇
  1992年   62篇
  1991年   43篇
  1990年   43篇
  1989年   48篇
  1988年   29篇
  1987年   32篇
  1986年   21篇
  1985年   20篇
  1984年   14篇
  1983年   30篇
  1982年   11篇
  1980年   7篇
  1979年   9篇
  1978年   7篇
  1977年   10篇
  1975年   7篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Food availability is important to the dynamics of animal social organizations or populations. However, the role of winter food availability in animal population dynamics is still controversial. We carried out an experimental study to test Lack’s hypothesis that reduced food in winter limits survival and spring numbers of breeding individuals of social groups, using the Mongolian gerbil (Meriones unguiculatus) as model species. We established 24 gerbil social groups in 24, 10 × 10 m, pens in September 2008. We provided wheat seeds as supplemental food in 12 enclosures from September 2008 to March 2009; the other 12 enclosures, not provided with supplemental food, served as controls. We live-trapped gerbils at a 2-week interval from September to April. Supplemental food during winter increased biweekly survival by 10% relative to that in control groups. Only four control social groups survived to the end of our study whereas all 12 food-supplemented social groups survived through our study period. Supplemental food also increased cumulative numbers of recruits and group sizes of gerbils. We conclude that winter food availability limits winter survival and spring social groups or population sizes of Mongolian gerbils.  相似文献   
2.
3.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
4.
5.
Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.  相似文献   
6.
7.
8.
Intestinal mucosal injuries are directly or indirectly related to many common acute and chronic diseases. Long non-coding RNAs (lncRNAs) are expressed in many diseases, including intestinal mucosal injury. However, the relationship between lncRNAs and intestinal mucosal injury has not been determined. Here, we investigated the functions and mechanisms of action of lncRNA Bmp1 on damaged intestinal mucosa. We found that Bmp1 was increased in damaged intestinal mucosal tissue and Bmp1 overexpression was able to alleviate intestinal mucosal injury. Bmp1 overexpression was found to influence cell proliferation, colony formation, and migration in IEC-6 or HIEC-6 cells. Moreover, miR-128-3p was downregulated after Bmp1 overexpression, and upregulation of miR-128-3p reversed the effects of Bmp1 overexpression in IEC-6 cells. Phf6 was observed to be a target of miR-128-3p. Furthermore, PHF6 overexpression affected IEC-6 cells by activating PI3K/AKT signaling which was mediated by the miR-128-3p/PHF6 axis. In conclusion, Bmp1 was found to promote the expression of PHF6 through the sponge miR-128-3p, activating the PI3K/AKT signaling pathway to promote cell migration and proliferation.Subject terms: Cell growth, Cell migration  相似文献   
9.
Protoplasts isolated from cotyledon-derived callus of Actinidia chinensisPlanch. var. chinensis (2N=2x=58) were fused with mesophyll protoplasts of Actiniadia kolomikta(Maxim. et Rupr.) Maxim (2N=2x=58) using a PEG method. Plantlets were regenerated from the fusion product clone 11. RAPD analyses, chromosome numbers of root tip cells and fluorescence peak position of leaf nuclei confirmed that clone 11 was an interspecific somatic hybrid (2N=4x=116) between A. chinensis and A. kolomikta. The chilling tolerance of the somatic hybrid was tested with in vitro leaves at low temperatures. Based on data of leaf thickness, electroconductivity, proline levels, malondialdehyde content and activity of superoxide dismutase, dendrogram cluster analysis suggested that the interspecific somatic hybrid was similar to A. kolomikta, and might have a higher capacity of cold resistance than A. chinensis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号