首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  1991年   1篇
  1990年   1篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   9篇
  1976年   2篇
  1974年   1篇
  1957年   2篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1946年   1篇
  1929年   1篇
排序方式: 共有44条查询结果,搜索用时 437 毫秒
1.
Stomatal responses to abscisic acid in three lupin species   总被引:2,自引:0,他引:2  
  相似文献   
2.
3.
Stomatal sensitivity to water stress was investigated in pearlmillet [Pennisetum americanum (L.) Leeke] in relation to stageof plant development, leaf water status and ABA content by samplingplants at midday. For the same leaf water potential (), droughtedplants with emerged panicles were found to have a greater leafconductance (gL), indicative of greater stomatal opening, thanplants sampled prior to panicle emergence. The difference betweensuch flowering (F) and non-flowering (NF) plants in at stomatalclosure was estimated to be at least 0.6 MPa. This differencewas considered unlikely to be the result of differential bulkleaf osmotic adjustment, and for most samples from both F andNF plants, bulk leaf turgor potential (p) was estimated to bezero. Stomatal closure in NF plants was associated in two genotypes(BJ 104 and line 112) with higher leaf ABA levels. Differencesin ABA levels between F and NF plants were, however, smalleror absent in genotypes Serere 39 and B282. These genotypes wereat lower than BJ 104 and line 112 when sampled and showed smallerdifferences between F and NF plants in conductance. Lower ABA levels in F plants are ascribed either to effectsof leaf ageing or to effects of flowering on ABA content ofthe leaf. Significant differences in gL in the absence of differencesin ABA content are taken to imply changes in stomatal sensitivityto the hormone or in its access to the stomatal complex. Pennisetum americanum (L.) Leeke, pearl millet, flowering, stomata, water stress, abscisic acid  相似文献   
4.
5.
The root nodules of both dormant and non-dormant plants of Alnusglutinosa (L.) Gaertn. were found (by the soybean callus bioassay)to contain levels of cytokinin activity greatly exceeding thoseof other parts of young vegetative plants. A large, transient increase in cytokinin activity occurred inthe nodules at the time of bud break. Similar, although muchsmaller, increases were detected also in roots and buds. Theincrease in the level of nodule cytokinin activity was observedboth in mature trees and in young pot-grown plants in two successiveyears. A second peak of cytokinin activity, considered to bederived from cytokinin nucleotides, was found in the nodulesof mature trees in midsummer. Analysis of cytokinin extracts of different plant parts by meansof a Sephadex LH20 column revealed the presence of three mainpeaks of activity, with elution volumes corresponding to thoseof zeatin-9-glucoside, zeatin riboside, and zeatin. While theglucoside-like peak -was predominant in the nodules and leavesit was not detected in root pressure sap. A zeatin ribo-side-likepeak was the major cytokinin in the roots and root pressuresap. These findings are discussed in relation to current hypothesesconcerning the production, distribution, and possible physiologicalroles of the cytokinins.  相似文献   
6.
The nature of the substances responsible for the major cytokininactivity in extracts of Alnus glutinosa (L.) Gaertn. root noduleswas investigated by means of chromatographic, chemical, andenzymic methods. Five cytokinins were demonstrated and a furthertwo compounds were probably present in trace amounts. The propertiesof the cytokinins were consistent with their being identicalor closely similar to trans-zeatin, trans-zeatin riboside, zeatin-O-ß-D-glucoside,and a ß-D -glucoside of zeatin riboside together withcertain of the corresponding dihydrozeatin compounds. The greatestpart of the cytokinin activity was represented by the glucosides.  相似文献   
7.
A pressure-volume (P-V) and an expressed sap (cryoscopic) techniquewere compared for assessing osmotic adjustment to water stressby pearl millet (Pennisetum americanum (L. ) Leeke) plants grownin a controlled environment cabinet. For leaf water potentials( ) above the point of zero turgor, there was good agreementbetween estimates of solute potential ( s)and turgor ( p) obtainedby the two methods. Reductions in pre-dawn leaf to –1.8 MPa over 5–6d resulted in net solute accumulation as indicated by a fallin s at full hydration of about 0.3 MPa. The degree of osmoticadjustment increased linearly with the decrease in pre-dawn. Adjustment in cv. BJ 104 was significantly (P < 0.05) lessduring a second drought than during a first, and cv. Serere39 was significantly (P < 0.05) less able to adjust osmoticallythan BJ 104. Adjustment was greater in leaves which were undergoing extensiongrowth during the drought than in leaves already fully extendedbefore drought started. Much of the adjustment was lost within24 h following rewatering, the loss being most complete in theolder, fully extended leaves.  相似文献   
8.
Abstract. Factors affecting stomatal conductance (g1) of pearl millet ( Pennisetum americanum [L.] Leeke), cultivar BJ 104, were examined in the field in India during the dry season.
Diurnal changes in g1 were evaluated for upper expanded leaves at flowering on two occasions using plants subjected to varying degrees of water stress. Except for the most severely stressed treatment, diurnal changes in g1 closely matched changes in irradiance ( I ), the promotive effect of which largely overcame opposing influences on g1 of increasing atmospheric vapour pressure deficit, and decreasing leaf water and turgor potentials (Ψ, Ψp).
Two main effects of water stress on g1 were evident: (i) a decrease in the amplitude of the mid-day peak in g1, and (ii) a decrease in the time over which high g1 was maintained, resulting in early (mid-day) closure and hysteresis in the relationship between g1 and I .
Leaf conductance was greatest for upper leaves and decreased down the canopy. At equivalent depths in the canopy g1 was higher in flowering than in photoperiodically-retarded plants of the same age. The magnitude of water stress-induced stomatal closure increased down the plant, and was more marked in retarded than in flowering plants.
Within individual stress treatments Ψ of upper leaves decreased linearly as transpiration flux increased. It is concluded that stomatal behaviour of upper leaves of pearl millet at flowering largely operates to maximize assimilation rather than to minimize water loss.  相似文献   
9.
10.
HENSON  I. E. 《Annals of botany》1982,50(1):9-24
Water stress was imposed by withholding water at an early vegetativestage from plants of two rice cultivars (IR20 and 63–83)grown in pots. As stress intensified the following sequenceof responses of the leaves was observed: (i) rise in abscisicacid (ABA) content, (ii) closure of stomata, (iii) initiationof leaf rolling. In both cultivars, turgor (p) declined linearly with total waterpotential () of the leaf. Bulk leaf ABA content increased linearlyas p declined, and attained twice the control (unstressed) levelfollowing a reduction in p of about 0.12 MPa. Stomatal conductance exhibited a sigmoidal relationship to p,declining abruptly when a particular ‘critical’p was reached (threshold response). The critical potentialsvaried considerably between experiments, but were closely correlatedwith control potentials and with the potentials at which ABAconcentration doubled relative to controls. Leaf rolling was initiated at s near to zero p. Increases inthe ratio of adaxial to abaxial conductance were associatedwith rolling. Variations in the above responses could be accounted for byvariations in the rate of stress development, which in termsof reduction ranged from 0.38 to 0.86 MPa day–1. Fastdrying rates resulted in: (a) reduced osmotic adjustment, (b)increased amounts of ABA in the leaf at a given level of orp, (c) an increase in the ABA concentration present at 50 percent stomatal closure, and (d) initiation of leaf rolling ata higher . Oryza sativa L., rice, water stress, stomata, leaf rolling, abscisic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号