首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  1994年   1篇
  1990年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Boron (B) is an essential nutrient for N2‐fixing legume–rhizobia symbioses, and the capacity of borate ions to bind and stabilize biomolecules is the basis of any B function. We used a borate‐binding‐specific resin and immunostaining techniques to identify B ligands important for the development of Pisum sativum–Rhizobium leguminosarum 3841 symbiotic nodules. arabinogalactan–extensin (AGPE), recognized by MAC 265 antibody, appeared heavily bound to the resin in extracts derived from B‐sufficient, but not from B‐deficient nodules. MAC 265 stained the infection threads and the extracellular matrix of cortical cells involved in the oxygen diffusion barrier. In B‐deprived nodules, immunolocalization of MAC 265 antigens was significantly reduced. Leghaemoglobin (Lb) concentration largely decreased in B‐deficient nodules. The absence of MAC 203 antigens in B‐deficient nodules suggests a high internal oxygen concentration, as this antibody detects an epitope on the lipopolysaccharide (LPS) of bacteroids typically expressed in micro‐aerobically grown R. leguminosarum 3841. However, B‐deprived nodules did not accumulate oxidized lipids and proteins, and revealed a decrease in the activity of the major antioxidant enzyme ascorbate peroxidase (APX). Therefore, B deficiency reduced the stability of nodule macromolecules important for rhizobial infection, and for regulation of oxygen concentration, resulting in non‐functional nodules, but did not appear to induce oxidative damage in low‐B nodules.  相似文献   
2.
Timing is crucial in seasonal environments. Passerine birds typically use a combination of physiological mechanisms and environmental cues to ensure that breeding, moult and migration occur without major temporal overlap and under the most favourable conditions. However, late in the breeding season some individuals initiate additional clutches , whereas others initiate moult. Such alternative strategies are thought to reflect trade‐offs between reproductive benefits and timely investment in maintenance and survival. The degree of seasonal plasticity differs between species, depending on the mechanisms that govern their annual routine. Migrants are generally under pressure to complete breeding and moult before the autumn departure and often show little plasticity. We studied seasonal plasticity of breeding and moult schedules in the European Stonechat Saxicola rubicola. This species, an obligate short‐distance migrant in Central Europe, sometimes initiates late clutches after typically at least two earlier breeding attempts. Based on life‐history theory and on observations in captivity, which revealed photoperiodic regulation of breeding and moult, we predicted relatively little seasonal plasticity in Stonechats. We further predicted that reproductive gains of late breeders should be offset by reduced survival. These predictions were tested on long‐term field data, using Underhill–Zucchini models to estimate moult. Late breeding occurred in c. 40% of pairs and increased their reproductive success by a third. Both sexes modified moult timing but in different ways. Late breeding females postponed moult approximately until chick independence without compensating for delay by faster moult. Males started moult on time and overlapped it with breeding, associated with markedly slowed plumage change. Sex differences in moult score increased with lay date, but due to their respective modifications, both sexes delayed moult completion. Nonetheless, we could not detect any evidence for survival costs of late breeding. Breeding and moult of European Stonechats appear relatively flexible, despite migratory schedules and photoperiodic programs for seasonal timing. Individuals can modify seasonal behaviour in late summer, presumably depending on their condition, and may profit considerably from extended breeding.  相似文献   
3.
The development of taphonomic approaches to facies analysis requires a foundation in facies-based actualistic studies. Modern intertidal and shallow shelf environments at Provincetown Harbor. northern Cape Cod, Massachusetts (USA) provide an opportunity to compare pattcrns and controlling factors in molluscan biofacies and taphofacies distributions. Variation in faunal composition, ecologic variables, and taphonomic attributes of molluscan death assemblages produce distinct patterns of environmental zonation: (1) Faunal composition (biofacies) primarily tracks variation in substrate type among environments (sand, rock, peat, and Zostera marina beds). (2) Ecologic variables (equitability, infauna: epifauna ratio, gastropod:bivalve ratio, and predation on M. mercenaria) appear to reflect tidal exposure time. (3) Taphononic attributes (fragmentation, abrasionm, corrosion, bioerosion, and encrustation) of the common bivalve M. mercenaria track environmental energy, in particular its effects on the stability and reworking of hardparts at the sediment surface. Shells in different environments proceed along different taphonomic pathways - the order of acquisition of taphonomic features by hardparts. An encrustation/bioerosion-dominated pathway characterizes low energy environments; the upper intertidal and deeper subtidal. An abrasion-dominated pathway characterizes the high energy lower intertidal and shallow subtidal. Contrasting pathways produce distinct proportions of taphonomic attributes in time-averaged samples; proportions that delineate taphofacies. Integrated taxonomic, ecologic and taphonomic data provide a more complete picture of environmental processes than any approach alone. Taphonomic data not only furnish information not readily provided by other approaches, but free paleoecology from the constraints of taxonomic uniformitarianism. □Taphonomy, comparative taphonomy, taphofacies, biofacies, cluster analysis, multidimensional scaling, taphonomic pathways, Recent, actualism, intertidal, molluses.  相似文献   
4.
Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method‐specific composition and storage of BC, i.e. BPCA‐BC, in a 0.44 km2‐sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA‐BC export with the stream draining the catchment. The catchment is composed of various landscape units with south‐southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north‐northeast (NNE) faced mineral soils with thin active layer, and permafrost‐affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA‐BC amounted to 0.6–3.0% of OC. This corresponded to a BC storage of 22–3440 g m?2. The relative contribution of BPCA‐BC to OC, as well as the absolute stocks of BPCA‐BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA‐BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA‐BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA‐BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA‐BC m?2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.  相似文献   
5.
Abstract In a culture of Microcystis aeruginosa, which had been transferred from a mineral medium into distilled water, the number of gas vacuoles per cell decreased and reached a value of 20% of the control 24 h after transfer. In senescent cells grown on a mineral agar for several weeks, the gas vacuoles also disappeared. The disappearance of the gas vacuoles may be a response to a nutrient deficiency in both cultures.  相似文献   
6.
Wetlands contribute considerably to the global greenhouse gas (GHG) balance. In these ecosystems, groundwater level (GWL) and temperature, two factors likely to be altered by climate change, exert important control over CO2, CH4 and N2O fluxes. However, little is known about the temperature sensitivity (Q10) of the combined GHG emissions from hydromorphic soils and how this Q10 varies with GWL. We performed a greenhouse experiment in which three different (plant‐free) hydromorphic soils from a temperate spruce forest were exposed to two GWLs (an intermediate GWL of ?20 cm and a high GWL of ?5 cm). Net CO2, CH4 and N2O fluxes were measured continuously. Here, we discuss how these fluxes responded to synoptic temperature fluctuations. Across all soils and GWLs, CO2 emissions responded similarly to temperature and Q10 was close to 2. The Q10 of the CH4 and N2O fluxes also was similar across soil types. GWL, on the other hand, significantly affected the Q10 of both CH4 and N2O emissions. The Q10 of the net CH4 fluxes increased from about 1 at GWL = ?20 cm to 3 at GWL = ?5 cm. For the N2O emissions, Q10 varied around 2 for GWL = ?20 cm and around 4 for GWL = ?5 cm. This substantial GWL‐effect on the Q10 of CH4 and N2O emissions was, however, hardly reflected in the Q10 of the total GHG emissions (which varied around 2), because the contribution of these gases was relatively small compared to that of CO2.  相似文献   
7.
Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed‐chamber technique from August to November 2003 and from August 2006 to July 2007 on tree‐covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high‐resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha−1 yr−1) than for soils with permafrost (0.37 kg CH4 ha−1 yr−1). In well‐drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha−1 yr−1). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha−1 yr−1). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha−1 yr−1. Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.  相似文献   
8.
The movement of foliar applied [1-14C]abscisic acid (ABA) inwheat plants (Triticum aestivum L., cv. Kolibri) was investigatedat two stages of grain development (1000 grains, weight 19 and24 g dry matter). [1–14C]ABA seemed to be readily translocated within 12h into the developing grains as well as in other plant parts.A subsequent rapid metabolism took place leading to a decreasedactivity of the ABA-containing chromatogram fraction in theyounger plants 48 h after application. The metabolism seemodto be less intensive in the older grains, where the activityrunning with the ABA increased over 64 h. Treating the leaves of barley plants (Hordeum vulgare, L., cv.Union) 2 weeks after anthesis with a gentle stream of warm air(36° C) resulted in a significant increase in the ABA contentof all parts of the ear. The results mentioned above indicatethat this may be partially due to translocation from other partsof the plant such as the leaves.  相似文献   
9.
Ten suites of 16 common types of invertebrate hard parts were placed in acid baths for 24 hours to determine relative rates and common styles of dissolution. Skeletal mineralogies included aragonite and both high-magnesium and low-magnesium calcite. Hard parts included barnacle cxoskelctons, cchinoid tests, gastropod opercula and gastropod and bivalve shells. Calcitic barnacle plates dissolved most rapidly, aragonitic and high magnesium calcitic hard parts showed intermediate rates, and the calcitic shells of the oyster dissolved at the lowest rate. The surface area to weight ratio of the hard parts correlated ( r =0.650) significantly with the hard part's rate of dissolution. Skeletal remains with a high surface area to weight ratio dissolved faster than those with a low surface area to weight ratio. Skeletal porosity and mineralogy appeared to be responsible for additional variation in the rate of dissolution. The effect of the surface area to weight ratio is sufficient to overcome the effect of mineralogy. Dense, compact aragonitic hard parts can persist longer than porous, thin calcitic remains. Typical features associated with skeletal degradation include development of chalky textures, thinning of distal margins, surface etching and formation of holes in bivalve muscle scars. Such features may aid in the recognition of partial dissolution of skeletal remains in the rock record. □ Taphonomy, paleoecology, fossil-diagenesis.  相似文献   
10.
Radiocarbon dates provide a means for estimating the time a shell may persist in active sedimentary environments and the actual temporal extent of time-averaging in marine deposits. Information compiled from the published literature on the radiocarbon age of marine shells gave information on a total of 734 radiocarbon dates from 276 localities from nearshore (< 10 m depth) and shelf (> 10 m depth) habitats. The median age of 128 nearshore shells is 2,465 years; that of 158 shells from the shelf is 8,870 years. The distribution of shell ages in both nearshore and shelf environments is strongly skewed: most dates are in the 0–3,000 range, and the number of shells in older age-classes falls off rapidly. The maximum age of a shell in an active sedimentary environment is a measure of time-averaging, because it estimates the amount of time represented in the deposit. The median duration of time-averaging in 63 nearshore deposits is 1,250 years; the median duration of time-averaging in 129 shelf deposits is 9,190 years. Radiocarbon-dated shells from fossil deposits confirm our estimate of time-averaging in nearshore environments: the median difference between maximum and minimum ages in 49 inactive beach ridges is 1,390 years; the median difference in other, predominantly nearshore deposits, is 830 years. Greater shell survival and longer durations of time-averaging in shelf settings may result from lower rates of sedimentation, lower rates of taphonomic destruction, greater rates of bioturbation, the history of post-glacial sea level, sample bias, or some combination of these factors. Our results may estimate the actual magnitude of time-averaging of shelly deposits forming under conditions of low net sediment accumulation. Such extensive time-averaging may confound attempts at detailed paleoecological and paleoenvironmental reconstruction. □ Time-averaging, benthic assemblages, taphonomy, radiocarbon, paleoecology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号