首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   19篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   14篇
  2006年   8篇
  2005年   8篇
  2004年   13篇
  2003年   13篇
  2002年   8篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有160条查询结果,搜索用时 17 毫秒
1.
2.
A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.  相似文献   
3.
Summary We used a cloned human cDNA probe homologous to the placenta chorionic gonadotropin subunit (CGB) and to the pituitary luteinizing hormone subunit (LHB) and Southern blotting techniques to analyse DNA from a series of rodent x human somatic cell hybrids for the presence of specific gonadotropin subunit related sequences. Our results provide evidence for the assignment and linkage of the eight genes (or pseudogenes) coding for the subunit of these glycoprotein hormones to chromosome 19. Moreover, we observed a strict concordance between the permissivity of mouse x man hybrid cells to enteroviruses (which is linked to the presence of specific cell receptors encoded by human chromosome 19) and the presence of CGB and LHB related sequences, thus confirming the localization of the structural genes for the subunits on chromosome 19.This work was supported in part by INSERM grants CRL 81 1041 and by MRC grant MT 4860  相似文献   
4.
Summary A specific enzyme immunoassay of uroporphyrinogen decarboxylase was developed and applied to the detection of the human enzyme in man-rodent somatic cell hybrids. This method allowed to assign the gene for uroporphyrinogen decarboxylase to human chromosome 1.  相似文献   
5.
Twenty independent man-mouse (Cl1D,LA/TK-, HPRT-) and man-hamster (CH,HPRT-) hybrids using female human cells with balanced reciprocal translocation XX,t(X;5)(q21;q11) were analyzed for human genes localized on chromosome 5 (HEXB), on chromosome X (PGK, GALA, HPRT, G6PD) and for the different chromosomes in relation with the balanced reciprocal translocation (chr.5, chr.5q-, chr.Xq+, chr.X). The different results obtained indicate that the genes for human markers HEXB, PGK are on Xq+, and that the genes for human markers GALA, G6PD are on 5q-. These data implicate finally the following localizations: HEXB on 5q11 leads to 5qter; PGK on Xq21 leads to Xpter; GALA, HPRT, G6PD on Xq21 leads to Xqter.  相似文献   
6.
7.
The enzyme NADPH oxidase is regulated by phospholipase D in intact neutrophils and is activated by phosphatidic acid (PA) plus diacylglycerol (DG) in cell-free systems. We showed previously that cell-free NADPH oxidase activation by these lipids involves both protein kinase-dependent and -independent pathways. Here we demonstrate that only the protein kinase-independent pathway is operative in a cell-free system of purified and recombinant NADPH oxidase components. Activation by PA + DG was ATP-independent and unaffected by the protein kinase inhibitor staurosporine, indicating the lack of protein kinase involvement. Both PA and DG were required for optimal activation to occur. The drug reduced activation of NADPH oxidase by either arachidonic acid or PA + DG, with IC(50) values of 46 and 25 microm, respectively. The optimal concentration of arachidonic acid or PA + DG for oxidase activation was shifted to the right with, indicating interference of the drug with the interaction of lipid activators and enzyme components. inhibited the lipid-induced aggregation/sedimentation of oxidase components p47(phox) and p67(phox), suggesting a disruption of the lipid-mediated assembly process. The direct effects of on NADPH oxidase activation complicate its use as a "specific" inhibitor of DG kinase. We conclude that the protein kinase-independent pathway of NADPH oxidase activation by PA and DG involves direct interaction with NADPH oxidase components. Thus, NADPH oxidase proteins are functional targets for these lipid messengers in the neutrophil.  相似文献   
8.
mAb NL7 was raised against purified flavocytochrome b(558), important in host defense and inflammation. NL7 recognized the gp91(phox) flavocytochrome b(558) subunit by immunoblot and bound to permeabilized neutrophils and neutrophil membranes. Epitope mapping by phage display analysis indicated that NL7 binds the (498)EKDVITGLK(506) region of gp91(phox). In a cell-free assay, NL7 inhibited in vitro activation of the NADPH oxidase in a concentration-dependent manner, and had marginal effects on the oxidase substrate Michaelis constant (K(m)). mAb NL7 did not inhibit translocation of p47(phox), p67(phox), or Rac to the plasma membrane, and bound its epitope on gp91(phox) independently of cytosolic factor translocation. However, after assembly of the NADPH oxidase complex, mAb NL7 bound the epitope but did not inhibit the generation of superoxide. Three-dimensional modeling of the C-terminal domain of gp91(phox) on a corn nitrate reductase template suggests close proximity of the NL7 epitope to the proposed NADPH binding site, but significant separation from the proposed p47(phox) binding sites. We conclude that the (498)EKDVITGLK(506) segment resides on the cytosolic surface of gp91(phox) and represents a region important for oxidase function, but not substrate or cytosolic component binding.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号