首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.

Background

Ethiopia has the largest cattle population in Africa. The vast majority of the national herd is of indigenous zebu cattle maintained in rural areas under extensive husbandry systems. However, in response to the increasing demand for milk products and the Ethiopian government''s efforts to improve productivity in the livestock sector, recent years have seen increased intensive husbandry settings holding exotic and cross breeds. This drive for increased productivity is however threatened by animal diseases that thrive under intensive settings, such as bovine tuberculosis (BTB), a disease that is already endemic in Ethiopia.

Methodology/Principal Findings

An extensive study was conducted to: estimate the prevalence of BTB in intensive dairy farms in central Ethiopia; identify associated risk factors; and characterize circulating strains of the causative agent, Mycobacterium bovis. The comparative intradermal tuberculin test (CIDT), questionnaire survey, post-mortem examination, bacteriology, and molecular typing were used to get a better understanding of the BTB prevalence among dairy farms in the study area. Based on the CIDT, our findings showed that around 30% of 2956 tested dairy cattle from 88 herds were positive for BTB while the herd prevalence was over 50%. Post-mortem examination revealed gross tuberculous lesions in 34/36 CIDT positive cattle and acid-fast bacilli were recovered from 31 animals. Molecular typing identified all isolates as M. bovis and further characterization by spoligotyping and MIRU-VNTR typing indicated low strain diversity within the study area.

Conclusions/Significance

This study showed an overall BTB herd prevalence of 50% in intensive dairy farms in Addis Ababa and surroundings, signalling an urgent need for intervention to control the disease and prevent zoonotic transmission of M. bovis to human populations consuming dairy products coming from these farms. It is suggested that government and policy makers should work together with stakeholders to design methods for the control of BTB in intensive farms in Ethiopia.  相似文献   
2.
Despite huge global efforts in tuberculosis (TB) control, pastoral areas remain under-investigated. During two years sputum and fine needle aspirate (FNA) specimens were collected from 260 Ethiopian pastoralists of Oromia and Somali Regional States with suspected pulmonary TB and from 32 cases with suspected TB lymphadenitis. In parallel, 207 suspected tuberculous lesions were collected from cattle, camels and goats at abattoirs. All specimens were processed and cultured for mycobacteria; samples with acid-fast stained bacilli (AFB) were further characterized by molecular methods including genus and deletion typing as well as spoligotyping. Non-tuberculous mycobacteria (NTM) were sequenced at the 16S rDNA locus. Culturing of AFB from human sputum and FNA samples gave a yield of 174 (67%) and 9 (28%) isolates, respectively. Molecular typing was performed on 173 of these isolates and 160 were confirmed as Mycobacterium tuberculosis, three as M. bovis, and the remaining 10 were typed as NTMs. Similarly, 48 AFB isolates (23%) yielded from tuberculous lesions of livestock, of which 39 were molecular typed, including 24 M. bovis and 4 NTMs from cattle, 1 M. tuberculosis and 1 NTM from camels and 9 NTMs from goats. Isolation of M. bovis from humans and M. tuberculosis from livestock suggests transmission between livestock and humans in the pastoral areas of South-East Ethiopia.  相似文献   
3.
We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.  相似文献   
4.

Background

Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed.

Methodology/Principal Findings

Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB’s DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB.

Conclusions

Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号