首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   9篇
  2018年   15篇
  2017年   6篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   11篇
  2012年   19篇
  2011年   19篇
  2010年   13篇
  2009年   3篇
  2008年   13篇
  2007年   5篇
  2006年   12篇
  2005年   9篇
  2004年   4篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
1.
Compression-induced changes in the shape and volume of the chondrocyte nucleus   总被引:11,自引:0,他引:11  
Changes in cell shape and volume are believed to play a role in the process of mechanical signal transduction by chondrocytes in articular cartilage. One proposed pathway through which chondrocyte deformation may be transduced to an intracellular signal is through cytoskeletally mediated deformation of intracellular organelles, and more specifically, of the cell nucleus. In this study, confocal scanning laser microscopy was used to perform in situ three-dimensional morphometric analyses of the nuclei of viable condrocytes during controlled compression of articular cartilage explants from the canine patellofemoral groove. Unconfined compression of the tissue to a 15% surface-to-surface strain resulted in a significant decrease of chondrocyte height and volume by 14.7 ± 6.4 and 11.4 ± 8.4%, respectively, and of nuclear height and volume by 8.8 ± 6.2% and 9.8 ± 8.8%, respectively. Disruption of the actin cytoskeleton using cytochalasin D altered the relationship between matrix deformation and changes in nuclear height and shape, but not volume. The morphology and deformation behavior of the chondrocytes were not affected by cytochalasin treatment. These results suggest that the actin cytoskeleton plays an important role in the link between compression of the extracellular matrix and deformation of the chondrocyte nuclei and imply that chondrocytes and their nuclei undergo significant changes in shape and volume in vivo.  相似文献   
2.
A series of (±) -3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3- position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC 50 = 98.8 μM, ketoconazole, 22.15 μM) showed that it was not stereoselective in its inhibition. (±) - (1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC 50 = 20.9 μM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC 50 = 211.6 μM respectively; ketoconazole, 38.8% and 85.95 μM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (±) - (1) was a weak inhibitor (c. 53% at 200 μM) whereas ketoconazole showed high potency (c. 65% at 0.625 μM and 0.25 μM respectively). The nature of the induced target enzyme is discussed.  相似文献   
3.
In a search for inhibitors of all-trans retinoic acid (RA)-metabolising enzymes as potential agents for the treatment of skin conditions and cancer we have examined 2-(4-aminophenylmethyl)-6-hydroxy-3,4-dihydronaphthalen-1(2H)-one (5). Compound (5) is a moderate inhibitor of RA-metabolising enzymes in mammalian cadaverous tissue microsomes and homogenates as well as RA-induced enzymes in cultured human genital fibroblasts and HaCat cells. Overall (5) was more potent than or equipotent with ketoconazole, a standard inhibitor, in the cadaverous systems but less active towards the RA-induced cell culture systems. Examination of the data suggests that RA-induction generates metabolising enzymes not present in the cadaverous systems, which are more susceptible to inhibition by ketoconazole than (5).  相似文献   
4.
Several studies have focused on the RAGE genetic background and have demonstrated that its polymorphisms affect the receptor's activity, expression, and downstream signaling. However, there is only little information regarding RAGE polymorphism in breast cancer. In the present study, the authors studied RAGE polymorphisms in 71 patients with breast cancer and 93 healthy women. RAGE –374T/A, –429T/C, and 63 bp Ins/del polymorphisms were analyzed using a hexaprimer amplification refractory mutation system PCR (H-ARMS-PCR). The results showed that RAGE polymorphisms are not associated with breast cancer in the current study population. Larger studies are required to confirm these data in other populations.  相似文献   
5.
6.
7.
Articular cartilage exhibits little intrinsic repair capacity, and new tissue engineering approaches are being developed to promote cartilage regeneration using cellular therapies. The goal of this study was to examine the chondrogenic potential of adipose tissue-derived stromal cells. Stromal cells were isolated from human subcutaneous adipose tissue obtained by liposuction and were expanded and grown in vitro with or without chondrogenic media in alginate culture. Adipose-derived stromal cells abundantly synthesized cartilage matrix molecules including collagen type II, VI, and chondroitin 4-sulfate. Alginate cell constructs grown in chondrogenic media for 2 weeks in vitro were then implanted subcutaneously in nude mice for 4 and 12 weeks. Immunohistochemical analysis of these samples showed significant production of cartilage matrix molecules. These findings document the ability of adipose tissue-derived stromal cells to produce characteristic cartilage matrix molecules in both in vitro and in vivo models, and suggest the potential of these cells in cartilage tissue engineering.  相似文献   
8.
Functional tissue engineering: the role of biomechanics   总被引:19,自引:0,他引:19  
"Tissue engineering" uses implanted cells, scaffolds, DNA, protein, and/or protein fragments to replace or repair injured or diseased tissues and organs. Despite its early success, tissue engineers have faced challenges in repairing or replacing tissues that serve a predominantly biomechanical function. An evolving discipline called "functional tissue engineering" (FTE) seeks to address these challenges. In this paper, the authors present principles of functional tissue engineering that should be addressed when engineering repairs and replacements for load-bearing structures. First, in vivo stress/strain histories need to be measured for a variety of activities. These in vivo data provide mechanical thresholds that tissue repairs/replacements will likely encounter after surgery. Second, the mechanical properties of the native tissues must be established for subfailure and failure conditions. These "baseline data" provide parameters within the expected thresholds for different in vivo activities and beyond these levels if safety factors are to be incorporated. Third, a subset of these mechanical properties must be selected and prioritized. This subset is important, given that the mechanical properties of the designs are not expected to completely duplicate the properties of the native tissues. Fourth, standards must be set when evaluating the repairs/replacements after surgery so as to determine, "how good is good enough?" Some aspects of the repair outcome may be inferior, but other mechanical characteristics of the repairs and replacements might be suitable. New and improved methods must also be developed for assessing the function of engineered tissues. Fifth, the effects of physical factors on cellular activity must be determined in engineered tissues. Knowing these signals may shorten the iterations required to replace a tissue successfully and direct cellular activity and phenotype toward a desired end goal. Finally, to effect a better repair outcome, cell-matrix implants may benefit from being mechanically stimulated using in vitro "bioreactors" prior to implantation. Increasing evidence suggests that mechanical stress, as well as other physical factors, may significantly increase the biosynthetic activity of cells in bioartificial matrices. Incorporating each of these principles of functional tissue engineering should result in safer and more efficacious repairs and replacements for the surgeon and patient.  相似文献   
9.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
10.
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号