首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2006年   6篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Summary A total of 30 cases of 46,XX true hermaphroditism was analysed for Y-DNA sequences including the recently cloned gene for male testis-determination SRY. In 3 cases, a portion of the Y chromosome including SRY was present and, in 2 cases, was localised, to Xp22 by in situ hybridisation. Since previous studies have shown that the majority of XX males are generated by an X-Y chromosomal interchange, the Xp22 position of the Yp material suggests that certain cases of hermaphroditism can arise by the same meiotic event. The phenotype in the 3 SRY-positive cases may be caused by X-inactivation resulting in somatic mosaicism of testis-determining factor expression giving rise to both testicular and ovarian tissues. Autosomal or X-linked mutation(s) elsewhere in the sex-determining pathway may explain the phenotype observed in the remaining 27 SRY-negative cases.  相似文献   
2.
3.
Trypanosoma brucei, the parasite that causes human African trypanosomiasis, is auxotrophic for purines and has specialist nucleoside transporters to import these metabolites. In particular, the P2 aminopurine transporter can also selectively accumulate melamine derivatives. In this Letter, we report the coupling of the melamine moiety to 2-hydroxy APA, a potent ornithine decarboxylase inhibitor, with the aim of selectively delivering this compound to the parasite. The best compound described here shows an increased in vitro trypanocidal activity compared with the parent.  相似文献   
4.
Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.  相似文献   
5.
Mitotic‐spindle organizing protein associated with a ring of γ‐tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ‐tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC‐MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha‐helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N‐terminus (residues 1–250) of GCP3 (γ‐tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.  相似文献   
6.
7.
Because very little is known about cell division in noncylindrical bacteria and cyanobacteria, we investigated 10 putative cytokinetic proteins in the unicellular spherical cyanobacterium Synechocystis strain PCC 6803. Concerning the eight penicillin-binding proteins (PBPs), which define three classes, we found that Synechocystis can survive in the absence of one but not two PBPs of either class A or class C, whereas the unique class B PBP (also termed FtsI) is indispensable. Furthermore, we showed that all three classes of PBPs are required for normal cell size. Similarly, the putative FtsQ and FtsW proteins appeared to be required for viability and normal cell size. We also used a suitable bacterial two-hybrid system to characterize the interaction web among the eight PBPs, FtsQ, and FtsW, as well as ZipN, the crucial FtsZ partner that occurs only in cyanobacteria and plant chloroplasts. We showed that FtsI, FtsQ, and ZipN are self-interacting proteins and that both FtsI and FtsQ interact with class A PBPs, as well as with ZipN. Collectively, these findings indicate that ZipN, in interacting with FtsZ and both FtsI and FtQ, plays a similar role to the Escherichia coli FtsA protein, which is missing in cyanobacteria and chloroplasts.The peptidoglycan layer (PG) of bacterial cell wall is a major determinant of cell shape, and the target of our best antibiotics. It is built from long glycan strands of repeating disaccharides cross-linked by short peptides (38). The resultant meshwork structure forms a strong and elastic exoskeleton essential for maintaining shape and withstanding intracellular pressure. Cell morphogenesis and division have been essentially studied in the rod-shaped organisms Escherichia coli and Bacillus subtilis, which divide through a single medial plane (8, 10, 21, 23). These organisms have two modes of cell wall synthesis: one involved in cell elongation and the second operating in septation (2). Each mode of synthesis is ensured by specific protein complexes involving factors implicated in the last step of PG synthesis (2). The complete assembly of PG requires a glycosyl transferase that polymerizes the glycan strands and a transpeptidase that cross-links them via their peptide side chains (35). Both activities are catalyzed by penicillin-binding proteins (PBPs), which can be divided into three classes: class A and class B high-molecular-weight (HMW) PBPs and class C low-molecular-weight (LMW) PBPs (35).Class A PBPs exhibit both transglycosylase and transpeptidase activities. In E. coli, they seem to be nonspecialized (2), as they operate in the synthesis of both cylindrical wall (cell elongation) and septal PG (cytokinesis). In B. subtilis, PBP1 (class A) is partially localized to septal sites and its depletion leads to cell division defects (31).Class B PBPs, which comprise two proteins in most bacteria, are monofunctional transpeptidases (35), each involved in longitudinal and septal growth of cell wall, respectively (36). In E. coli, this protein, PBP3, is also termed FtsI, because it belongs to the Fts group of cell division factors whose depletion leads to the filamentation phenotype (11). These at least 10 Fts proteins are recruited to the division site at mid-cell in the following sequential order: FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsL/FtsB, FtsW, FtsI, and FtsN (11). The cytoplasmic protein FtsZ is the first recruited to the division site, where it polymerizes in a ring-like structure (1), which serves as a scaffold for the recruitment of the other Fts proteins and has been proposed to drive the division process (6). Together the Fts proteins form a complex machine coordinating nucleoid segregation, membrane constriction, septal PG synthesis, and possibly membrane fusion.Unlike the other PBPs, class C PBPs do not operate in PG synthesis but rather in maturation or recycling of PG during cell septation (35). They are subdivided into four types. Class C type 5 PBP removes the terminal d-alanine residue from pentapeptide side-chains (dd-carboxypeptidase activity). Types 4 and 7 are able to cleave the peptide cross-links (endopeptidase activity). Finally, type AmpH, which does not have a defined enzymatic activity, is believed to play a role in the normal course of PG synthesis, remodeling or recycling (for a review, see reference 35).In contrast to rod-shaped bacteria, less is known concerning PG synthesis, morphogenesis, and cytokinesis, and their relationships, in spherical-celled bacteria, even though a wealth of them have a strong impact on the environment and/or human health. Furthermore, unlike rod-shaped bacteria spherical-celled bacteria possess an infinite number of potential division planes at the point of greater cell diameter, and they divide through alternative perpendicular planes (26, 36, 37, 39). The spherical cells of Staphylococcus aureus seem to insert new PG strands only at the septum, and accordingly the unique class A PBP localizes at the septum during cell division (36). In contrast, the rugby-ball-shaped cells of Streptococcus pneumoniae synthesize cell wall at both the septum and the neighboring region called “equatorial rings” (36). Accordingly, class A PBP2a and PBP1a were found to operate in elongation and septation, respectively (29).In cyanobacteria, which are crucial to the biosphere in using solar energy to renew the oxygenic atmosphere and which make up the biomass for the food chain (7, 30, 40), cell division is currently investigated in two unicellular models with different morphologies: the rod-shaped Synechococcus elongatus strain PCC 7942 (19, 28) and the spherical-celled Synechocystis strain PCC 6803 (26), which both possess a small fully sequenced genome (http://genome.kazusa.or.jp/cyanobase/) that is easily manipulable (18). In both organisms FtsZ and ZipN/Arc6, a protein occurring only in cyanobacteria (ZipN) and plant chloroplasts (Arc6), were found to be crucial for cytokinesis (19, 26, 28) and to physically interact with each other (25, 26). Also, interestingly, recent studies of cell division in the filamentous cyanobacterium Anabaena (Nostoc) strain PCC 7120, showed that this process is connected with the differentiation of heterocysts, the cells dedicated to nitrogen fixation (34).In a continuous effort to study the cell division machine of the unicellular spherical cyanobacterium Synechocystis, we have presently characterized its eight presumptive PBPs (22) that define three classes and the putative cytokinetic proteins FtsQ and FtsW, as well as their network of interactions between each other and ZipN. Both FtsI and FtsQ were found to be key players in cell division in interacting with ZipN and class A PBPs. Consequently, ZipN in interacting with FtsZ (26), FtsI, and FtQ, like the FtsA protein of E. coli, could play a role similar to FtsA, which is absent in cyanobacteria and chloroplasts.  相似文献   
8.
We present a method to model biological systems, the theory of games networks. It extends game theory by multiplying the number of games, and by allowing agents to play several games simultaneously. Some important notions of biological systems, such as locality of interactions and modularity, can then be modelled.  相似文献   
9.
Using a bacterial two-hybrid system and a combination of in vivo and in vitro assays that take advantage of the green fluorescent reporter protein (GFP), we have investigated the localization and the protein-protein interaction of several key components of the cytokinetic machinery of cyanobacteria (i.e. the progenitor of chloroplast). We demonstrate that (i) the ftsZ and zipN genes are essential for the viability of the model cyanobacterium Synechocystis sp. PCC 6803, whereas the minCDE cluster is dispensable for cell growth; (ii) the GTP-binding domain of FtsZ is crucial to FtsZ assembly into the septal ring at mid-cell; (iii) the Z-ring of deeply constricted daughter cells is oriented perpendicularly to the mother Z-ring, showing that Synechocystis divides in alternating perpendicular planes; (iv) the MinCDE system affects the morphology of the cell, as well as the position and the shape of FtsZ structures; and (v) MinD is targeted to cell membranes in a process involving its C-terminal amphipathic helix, but not its ATP-binding region. Finally, we have also characterized a novel Z-interacting protein, ZipN, the N-terminal DnaJ domain of which is critical to the decoration of the Z-ring, and we report that this process is independent of MinCDE.  相似文献   
10.

Background

Leishmaniasis remains a global health problem because of the substantial holes that remain in our understanding of sand fly ecology and the failure of traditional vector control methods. The specific larval food source is unknown for all but a few sand fly species, and this is particularly true for the vectors of Leishmania parasites. We provide methods and materials that could be used to understand, and ultimately break, the transmission cycle of zoonotic cutaneous leishmaniasis.

Methods and Findings

We demonstrated in laboratory studies that analysis of the stable carbon and nitrogen isotopes found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture the sand fly larvae themselves. In a field trial, we also demonstrated using this technique that half of captured adult sand flies had fed as larvae on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that have been shown in previous studies to pass into the rodents'' feces and kill sand fly larvae also could play a future role in sand fly control. In a second study we showed that rubidium incorporated into rodent baits could be used to demonstrate the level of bloodfeeding by sand flies on baited rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of baited rodents.

Conclusions

Combined, the techniques described could help to identify larval food sources of other important vectors of the protozoa that cause visceral or dermal leishmaniasis. Unveiling aspects of the life cycles of sand flies that could be targeted with insecticides would guide future sand fly control programs for prevention of leishmaniasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号