首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   54篇
  2020年   6篇
  2018年   5篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   15篇
  2012年   12篇
  2011年   13篇
  2010年   9篇
  2009年   7篇
  2008年   15篇
  2007年   15篇
  2006年   5篇
  2005年   13篇
  2004年   8篇
  2003年   16篇
  2002年   5篇
  2001年   5篇
  1992年   7篇
  1990年   5篇
  1986年   6篇
  1984年   5篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1977年   6篇
  1973年   6篇
  1970年   6篇
  1968年   4篇
  1962年   9篇
  1960年   9篇
  1958年   9篇
  1954年   6篇
  1950年   4篇
  1949年   5篇
  1948年   4篇
  1947年   4篇
  1945年   5篇
  1939年   4篇
  1938年   4篇
  1934年   5篇
  1927年   4篇
  1925年   4篇
  1924年   6篇
  1923年   4篇
  1921年   4篇
  1920年   4篇
  1911年   4篇
  1902年   5篇
排序方式: 共有484条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
It is known that insulin is adsorbed onto glass but it has been assumed that it is not adsorbed onto plastic. We find that tritium-labelled insulin is adsorbed onto all materials tried. The adsorption is reduced in the presence of other proteins and can be prevented altogether by coating the vessels with cetyl alcohol.  相似文献   
6.
Isolation of a Cellodextrinase from Bacteroides succinogenes   总被引:21,自引:13,他引:8       下载免费PDF全文
An enzyme which released the cellobiose group from p-nitrophenyl cellobioside was isolated from the periplasmic space of Bacteroides succinogenes grown on Avicel crystalline cellulose in a continuous cultivation system and separated from endoglucanases by column chromatography. The molecular weight of the enzyme was approximately 40,000, as estimated by gel filtration. The enzyme has an isoelectric point of 4.9. The enzyme exhibited low hydrolytic activity on acid-swollen cellulose and practically no activity on carboxymethyl cellulose, Avicel cellulose, and cellobiose, but it hydrolyzed p-nitrophenyl lactoside and released cellobiose from cellotriose and from higher cello-oligosaccharides. These data demonstrate that the enzyme is a cellodextrinase with an exotype of function.  相似文献   
7.
Cellulolytic Activity of Clostridium acetobutylicum   总被引:7,自引:6,他引:1       下载免费PDF全文
Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 with cellobiose as the limiting nutrient, maximum production of the endoglucanase and cellobiase occurred at pH values of 5.2 and 4.8, respectively. In the carbon-limited continuous cultures, strain 824 produced similar levels of endoglucanase, cellobiosidase, and cellobiase activities regardless of the carbon source used. However, in ammonium- or phosphate-limited cultures, with an excess of glucose, only 1/10 of the endoglucanase was produced, and neither cellobiosidase nor cellobiase activities were detectable. A crude extracellular enzyme preparation from strain B527 hydrolyzed carboxymethylcellulose and phosphoric acid-swollen cellulose readily and microcrystalline cellulose (A vicel) to a lesser extent. Glucose accounted for more than 90% of the reducing sugar produced by the hydrolysis of acid-swollen cellulose and Avicel. Strain B527 did not grow in medium with acid-swollen cellulose as the sole source of carbohydrate, although it grew readily on the products obtained by hydrolyzing the cellulose in vitro with a preparation of extracellular cellulase derived from the same organism.  相似文献   
8.
9.
Approximately 15000 L of unleaded gasoline werereleased into the surrounding vadose zone from aleaking underground storage tank. Initialremediation was by soil vapor extraction andcombustion which soon became cost prohibitive, asadded propane was required to reach the combustionlimit of the extracted vapors. As a cost effectivealternative, a field-scale compost based biofilterwas used in conjunction with soil vapor extractionto remediate the vadose zone. The biofilter wasconstructed on site using 4:1 diatomaceousearth:composted horse manure. Results of a fivemonth study showed that the biofilter removedapproximately 90% of total petroleum hydrocarbons(TPH) and >90% of the BTEX compounds (benzene,toluene, ethylbenzene, xylene), achieving thestringent permit requirements set at either 90% TPHreduction or less than 1.36 kg per day of volatileorganic compounds (VOC's) released to theatmosphere. The biofilter showed the capacity toreadily adapt to changing environmental conditionssuch as increased contaminant loading, andvariations in temperature and moisture. Thebacterial population in the biofilter was uniformlydiverse throughout the biofilter, suggesting that aconsortium of bacteria was needed for efficientbiodegradation. The cost of biofilter set up andoperation saved 90% in the first year alone of theoperating expenses incurred by soil vapor extractionand combustion.  相似文献   
10.
In a downflow stationary fixed-film anaerobic reactor receiving a swine waste influent, few bacteria were observed to be tightly adherent to the surfaces of the needle-punched polyester support material. However, there was a morphologically complex, dense population of bacteria trapped within the matrix. Frequently large microcolonies of a uniform morphological type of bacteria were observed. These were particularly evident for methanosarcina-like bacteria which grew forming large aggregates of unseparated cells. Leafy deposits of electron-dense, calcium- and phosphorus-enriched material coated the polyester matrix and some cells. As the biofilm matured there was more extensive mineral deposition which completely entrapped cells. The entrapped cells appeared to autolyze, and many were partially degraded. Further impregnation of the matrix with minerals and apparent cell death may eventually have a deleterious effect on the methanogenic activity of the biofilm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号