首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   10篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   4篇
  2012年   7篇
  2011年   14篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   1篇
  2005年   8篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1977年   2篇
排序方式: 共有107条查询结果,搜索用时 328 毫秒
1.
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions.  相似文献   
2.
The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA.  相似文献   
3.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   
4.
This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 microg ml(-1). The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 microg of cereulide g(-1) (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 microg of cereulide ml(-1) in liquid medium at room temperature (21 +/- 1 degrees C) in 1 to 3 days, during the stationary growth phase when cell density was 2 x 10(8) to 6 x 10(8) CFU ml(-1). Cereulide production at temperatures at and below 8 degrees C or at 40 degrees C was minimal.  相似文献   
5.
Vibrio (V.) parahaemolyticus is an aquatic halophilic bacteria which produces gastroenteritis and in rare cases septicaemia after the consumption of raw or under-cooked contaminated seafood.The severity of diarrheal illness caused by this bacterium is closely related to the presence of two types of hemolysins (the thermostable direct hemolysin-TDH and TDH related hemolysin-TRH) and also of type III secretion system (TTSS) proteins. The TTSS type 1 induces a wide array of effects on infected HeLa cells such as autophagy, oncosis, cell rounding and lysis. Previous studies have shown that heat shock proteins have the ability to stimulate the production of interleukins in different cellular cultures. In our studies we have stimulated two cellular lines (HeLa and human diploid cells) with different V. parahaemolyticus culture fractions in order to observe the effect on cytokines production. Thus, the purpose of this study was to analyze the expression of IL-1, IL-2, IL-4, IL-6, IL-10 and TNF-alpha induced by the cell treatment with total cellular lysate, periplasmic fractions and culture supernatants extracted from V. parahaemolyticus exposed to normal and also to stress conditions. The ELISA assay of the cytokine profile of the HeLa and HDC cell lines stimulated with different bacterial fractions revealed that in the V. parahemolyticus cultures submitted to osmotic and heat shock stress are accumulating factors (probably heat shock proteins) which are exhibiting immunomodulatory activity, responsible for the induction of a pro-inflammatory response associated with increased levels of IL-6 and TNF-alpha expression, however balanced by the stimulation of the anti-inflammatory cytokine IL-4 synthesis.  相似文献   
6.
Potato is one of the main targets for genetic improvement by gene transfer. The aim of the present study was to establish a robust protocol for the genetic transformation of three dihaploid and four economically important cultivars of potato using Agrobacterium tumefaciens carrying the in vivo screenable reporter gene for green fluorescent protein (gfp) and the marker gene for neomycin phosphotransferase (nptII). Stem and leaf explants were used for transformation by Agrobacterium tumefaciens strain LBA4404 carrying the binary vector pHB2892. Kanamycin selection, visual screening of GFP by epifluorescent microscopy, PCR amplification of nptII and gfp genes, as well as RT-PCR and Southern blotting of gfp and Northern blotting of nptII, were used for transgenic plant selection, identification and analysis. Genetic transformation was optimized for the best performing genotypes with a mean number of shoots expressing gfp per explant of 13 and 2 (dihaploid line 178/10 and cv. ‘Baltica’, respectively). The nptII marker and gfp reporter genes permitted selection and excellent visual screening of transgenic tissues and plants. They also revealed the effects of antibiotic selection on organogenesis and transformation frequency, and the identification of escapes and chimeras in all potato genotypes. Silencing of the gfp transgene that may represent site-specific inactivation during cell differentiation, occurred in some transgenic shoots of tetraploid cultivars and in specific chimeric clones of the dihaploid line 178/10. The regeneration of escapes could be attributed to either the protection of non-transformed cells by neighbouring transgenic cells, or the persistence of Agrobacterium cells in plant tissues after co-cultivation.  相似文献   
7.
Treponema denticola has been associated with gingivitis and chronic periodontitis. The aim of this study was to identify Treponema denticola in subgingival samples using PCR technology and to correlate it with clinical diagnosis of subjects. The study was carried out on seventy patients (20-84 years of age; mean age, 45.06 +/- 12.58) of which 22 individuals with no detectable gingivitis or periodontitis, 4 subjects with chronic gingivitis and 44 subjects with chronic periodontitis. Subgingival plaque samples were collected from five sites in each patient. DNA was extracted from the samples using QIAamp DNA Mini Kit (QIAGEN). Treponema denticola and other four periodontopathogens were found using multiplex polymerase chain reaction followed by a reverse hybridization. The relationship between clinical diagnoses and detection of Treponema denticola was determined with Fisher exact test. The results showed significant differences between diagnostic groups regarding subject proportion. Treponema denticola was detected in 2 out of 22 subjects with no detectable gingivitis or periodontitis, 2 out of 4 subjects with chronic gingivitis, and 40 out of 44 subjects with chronic periodontitis. Our findings suggest that Treponema denticola is closely connected to the initiation and progression of periodontal disease.  相似文献   
8.
Producers of cereulide, the emetic toxin of Bacillus cereus, are known to constitute a specific subset within this species. We investigated physiological and genetic properties of 24 strains of B. cereus including two high cereulide producers (600–1,800 ng cereulide mg−1 wet weight biomass), seven average producers (180–600 ng cereulide mg−1 wet weight biomass), four low cereulide producers (20–160 ng cereulide mg−1 wet weight biomass) and 11 non-producers representing isolates from food, food poisoning, human gut and environment. The 13 cereulide producers possessed 16S rRNA gene sequences identical to each other and identical to that of B. anthracis strains Ames, Sterne from GenBank and strain NC 08234–02, but showed diversity in the adk gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three types of patterns), in tyrosin decomposition, haemolysis and lecithin hydrolysis (two phenotypes). The cereulide-producing isolates from the human gut represented two ribopatterns of which one was novel to cereulide-producing B. cereus and two phenotypes. We conclude that the cereulide-producing B. cereus are genetically and biochemically more diverse than hitherto thought.  相似文献   
9.
We describe a development of a novel high-throughput phagocytosis assay based on a pH-sensitive cyanine dye, CypHer5E, which is maximally fluorescent in an acidic environment. This dye is ideally suited for the study of phagocytosis because of the acidic conditions generated in the intracellular phagocytic vesicles after particle uptake. Use of CypHer5E-labeled particles results in greatly reduced background from noninternalized particles and makes the assay more robust. Additionally, CypHer5E-labeled particles are resistant to fluorescence quenching observed in the aggressive and acidic environment of the phagosome with traditional dyes. The CypHer5E-based assay has been shown to work reliably in a variety of cell types, including primary human monocytes, primary human dendritic cells, primary human endothelial cells, human monocytic THP-1 cell line, and human/mouse hybrid macrophage cell line WBC264-9C. Inhibition of CypHer5E bead uptake by cytochalasin D was studied, and the 50% inhibition concentration (IC50) was determined. The assay was performed in 96- and 384-well formats, and it is appropriate for high-throughput cellular screening of processes and compounds affecting phagocytosis. The CypHer5E phagocytosis assay is superior to existing protocols because it allows easy distinction of true phagocytosis from particle adherence and can be used in microscopy-based measurement of phagocytosis.  相似文献   
10.
Lipoyl synthase (LipA) catalyzes the formation of the lipoyl cofactor, which is employed by several multienzyme complexes for the oxidative decarboxylation of various alpha-keto acids, as well as the cleavage of glycine into CO(2) and NH(3), with concomitant transfer of its alpha-carbon to tetrahydrofolate, generating N(5),N(10)-methylenetetrahydrofolate. In each case, the lipoyl cofactor is tethered covalently in an amide linkage to a conserved lysine residue located on a designated lipoyl-bearing subunit of the complex. Genetic and biochemical studies suggest that lipoyl synthase is a member of a newly established class of metalloenzymes that use S-adenosyl-l-methionine (AdoMet) as a source of a 5'-deoxyadenosyl radical (5'-dA(*)), which is an obligate intermediate in each reaction. These enzymes contain iron-sulfur clusters, which provide an electron during the cleavage of AdoMet, forming l-methionine in addition to the primary radical. Recently, one substrate for lipoyl synthase has been shown to be the octanoylated derivative of the lipoyl-bearing subunit (E(2)) of the pyruvate dehydrogenase complex [Zhao, S., Miller, J. R., Jian, Y., Marletta, M. A., and Cronan, J. E., Jr. (2003) Chem. Biol. 10, 1293-1302]. Herein, we show that the octanoylated derivative of the lipoyl-bearing subunit of the glycine cleavage system (H-protein) is also a substrate for LipA, providing further evidence that the cofactor is synthesized on its target protein. Moreover, we show that the 5'-dA(*) acts directly on the octanoyl substrate, as evidenced by deuterium transfer from [octanoyl-d(15)]H-protein to 5'-deoxyadenosine. Last, our data indicate that 2 equiv of AdoMet are cleaved irreversibly in forming 1 equiv of [lipoyl]H-protein and are consistent with a model in which two LipA proteins are required to synthesize one lipoyl group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号