首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1971年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
2.
Phosphorus efficiency of plants   总被引:1,自引:0,他引:1  
hse et al. (1988) have shown that P influx per unit root length in seven plant species growing in a low-P soil varied from 0.6×10-14 to 4.8×10-14 mol cm-1s-1. The objective of this work was to investigate the reasons for these differences. No correlation was found between P influx and root radius, root hairs, cation-anion balance and Ca uptake. However, when root hairs were included in mathematical model calculations, the differences of P influx could be accounted for. These calculations have shown that in soils low in available P, contribution to P uptake by root hairs was up to 90% of total uptake. The large contribution of root hairs to P uptake was partly due to their surface area, which was similar to that of the root cylinder. However, the main reason for the high P uptake efficiency of root hairs was their small radius (approx. 5×10-4 cm) and their perpendicular growth into the soil from the root axis. Because of the small radius compared to root axes, P concentration at root hair surfaces decreased at a slower pace and therefore P influx remained higher. Under these conditions higher Imax (maximum influx) or smaller Km values (Michaelis constant) increased P influx. The main reasons for differences found in P influx among species were the size of Imax and the number and length of root hairs. In a soil low in available P, plant species having more root hairs were able to satisfy a higher proportion of their P demand required for maximum growth.  相似文献   
3.
In vivo pulse labeling of suspension-cultured Arabidopsis cells with [32P]orthophosphate allows a systematic analysis of dynamic changes in protein phosphorylation. Here, we use this technique to investigate signal transduction events at the plant plasma membrane triggered upon perception of microbial elicitors of defense responses, using as a model elicitor flg22, a peptide corresponding to the most conserved domain of bacterial flagellin. We demonstrate that two-dimensional gel electrophoresis in conjunction with mass spectrometry is a suitable tool for the identification of intrinsic membrane proteins, and we show that among them a syntaxin, AtSyp122, is phosphorylated rapidly in response to flg22. Although incorporation of radioactive phosphate into the protein only occurs significantly after elicitation, immunoblot analysis after two-dimensional gel separation indicates that the protein is also phosphorylated prior to elicitation. These results indicate that flg22 elicits either an increase in the rate of turnover of phosphate or an additional de novo phosphorylation event. In vitro, phosphorylation of AtSyp122 is calcium-dependent. In vitro phosphorylated peptides separated by two-dimensional thin layer chromatography comigrate with two of the three in vivo phosphopeptides, indicating that this calcium-dependent phosphorylation is biologically relevant. These results indicate a regulatory link between elicitor-induced calcium fluxes and the rapid phosphorylation of a syntaxin. Because syntaxins are known to be important in membrane fusion and exocytosis, we hypothesize that one of the functions of the calcium signal is to stimulate exocytosis of defense-related proteins and compounds.  相似文献   
4.
The perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used radioactive orthophosphate to pulse-label suspension-cultured cells of Arabidopsis in conjunction with two-dimensional gel electrophoresis and mass spectrometry to identify proteins that are phosphorylated rapidly in response to bacterial and fungal elicitors. One of these proteins, AtPhos43, and related proteins in tomato and rice, are phosphorylated within minutes after treatment with flagellin or chitin fragments. By measuring (32)P incorporation into AtPhos43 immunoprecipitated from extracts of elicitor-treated hormone and defense-response mutants, we found that phosphorylation of AtPhos43 after flagellin treatment but not chitin treatment is dependent on FLS2, a receptor-like kinase involved in flagellin perception. Induction by both elicitors is not dependent on salicylic acid or EDS1, a putative lipase involved in defense signaling.  相似文献   
5.
6.
7.
8.
9.
Protein conjugation with ubiquitin, known as ubiquitination, is a key regulatory mechanism to control protein abundance, localization, and activity in eukaryotic cells. To identify ubiquitin-dependent regulatory steps in plants, we developed a robust affinity purification/identification system for ubiquitinated proteins. Using GST-tagged ubiquitin binding domains, we performed a large scale affinity purification of ubiquitinated proteins from Arabidopsis cell suspension culture. High molecular weight ubiquitinated proteins were separated by SDS-PAGE, and the trypsin-digested samples were then analyzed by a multidimensional protein identification technology (MudPIT) system. A total of 294 proteins specifically bound by the GST-tagged ubiquitin binding domains were identified. From these we determined 85 ubiquitinated lysine residues in 56 proteins, confirming the enrichment of the target class of proteins. Our data provide the first view of the ubiquitinated proteome in plants. We also provide evidence that this technique can be broadly applied to the study of protein ubiquitination in diverse plant species.  相似文献   
10.
It is emerging that CD4(+)Foxp3(+) regulatory T (Treg) cells can produce the proinflammatory cytokine IFN-γ when stimulated in a Th1 cytokine environment. In this study, we report that Foxp3(+) Treg cells readily produced IFN-γ in vivo in a highly inflammatory model of graft-versus-host disease (GVHD) and during a Th1-dominated immune response to intracellular bacteria. Moreover, stimulation in vitro via TCR in the presence of IL-12 alone was sufficient to induce IFN-γ production by Treg cells in a dose-dependent manner. Transfer of donor Treg cells can prevent lethal GVHD; therefore, we used this model as a robust readout for in vivo Treg function. Interestingly, >50% of allogeneic donor, but not residual recipient Foxp3(+) Treg cells produced IFN-γ after transplantation, suggesting that this cytokine production was alloantigen specific. These IFN-γ producers were stable Foxp3(+) Treg cells because methylation analysis of the Foxp3 gene locus of transferred and reisolated Treg cells during GVHD showed a fully demethylated Treg-specific-demethylated region. Next, we addressed whether IFN-γ production was supporting or rather impairing the immunosuppressive function of Treg cells during GVHD. Blocking of IFN-γ with specific mAb completely abolished the beneficial effect of donor Treg cells. We could further show that only wild-type Treg cells, but not Treg cells from IFN-γ-deficient donor mice, prevented GVHD. This indicated that Treg cell-intrinsic IFN-γ production was required for their protective function. In conclusion, our data show that IFN-γ produced by Foxp3(+) Treg cells has essential immune-regulatory functions that are required for prevention of experimental GVHD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号